Changes

Տարերք/Գիրք 11

Ավելացվել է 61 178 բայտ, 09:00, 12 Դեկտեմբերի 2024
[[Մասնակից:Narek Aghajanyan]]-ի ներդրումը էջ 423 - 430 տեղափոխվում է [[Տարերք/Գիրք 10]]-ից
{{Վերնագիր|վերնագիր = [[Տարերք]], Գիրք 11|հեղինակ = [[էվկլիդես]]|թարգմանիչ = [[Մասնակից:Lilian|Lilian]]|աղբյուր = [https://farside.ph.utexas.edu/Books/Euclid/Elements.pdf Euclid''' Pages 431 - 455 '''s Elements of Geometry, English translation by Richard Fitzpatrick]}}{{Տարերքի գրքեր}}[[Կատեգորիա:Մաթեմատիկա]]
== Պնդում 7 ==
== Էջ 423 - 430 ==
==Սահմանումներ==
# Մարմինը (ֆիգուր) է, որն ունի երկարություն, լայնություն և խորություն։
# Մարմնի եզրը (ֆիգուր) մակերևույթն է։
# Ուղիղ գիծը ուղղահայաց է հարթությանը, երբ այն կազմում է ուղիղ անկյուններ իր հետ միացված բոլոր ուղիղ գծերի հետ, որոնք նույնպես գտնվում են հարթության մեջ։
# Հարթությունը ուղղահայաց է մեկ այլ հարթության, երբ մեկ հարթության մեջ ուղղված բոլոր ուղիղ գծերը, որոնք ուղղահայաց են հարթությունների ընդհանուր հատվածին, ուղղահայաց են մնում մյուս հարթության նկատմամբ։
# Ուղիղ գծի և հարթության միջև անկումը այն անկյունն է, որը պարփակվում է գծված և կանգնած (ուղիղ գծերով), երբ կանգնած ուղիղ գծի ծայրից ուղղահայաց է տարվում դեպի հարթություն, և գծվում է մի ուղիղ գիծ կանգնած ուղիղ գծի ծայրից դեպի ստացված կետ։
# Հարթության և մեկ այլ հարթության միջև անկումը սուր անկյունն է, որը պարփակվում է (ուղիղ գծերով), որոնք գծվում են յուրաքանչյուր հարթությունում և ուղղահայաց են ընդհանուր հատվածին։
# Ասում են, որ հարթությունը հարթությանը նման անկումով է, երբ նշված անկումները հավասար են։
# Զուգահեռ հարթություններն են նրանք, որոնք չեն հատվում։
# Նման մարմնական ֆիգուրներն են նրանք, որոնք պարփակված են հավասար թվով նման հարթություններով (որոնք նման ձևով են դասավորված)։
# Հավասար և նման մարմնական ֆիգուրներն են նրանք, որոնք պարփակված են նման հարթություններով, հավասար թվով և մեծությամբ (նման ձևով դասավորված)։
# Մարմնային անկյունը կազմված է երկուից ավելի գծերի միացումից, որոնք չեն գտնվում նույն մակերեսի վրա։ Կամ՝ մարմնային անկյունը այն է, որը պարփակվում է երկուից ավելի հարթ անկյուններով, որոնք կառուցված են միևնույն կետում, բայց չեն գտնվում նույն հարթությունում։
# Պիրամիդը մարմնական ֆիգուր է, որը պարփակված է հարթություններով և կառուցված է մեկ հարթությունից դեպի մեկ կետ։
# Պրիզման մարմնական ֆիգուր է, որը պարփակված է հարթություններով, որոնց երկու հակառակ (հարթությունները) հավասար են, նման և զուգահեռ, իսկ մնացածները ուղղանկյուններ են։
# Գունդը այն ֆիգուրն է, որը ստացվում է, երբ կիսաշրջանագծի տրամագիծը մնում է ֆիքսված, և կիսաշրջանը պտտվում է։
# Գնդի առանցքը այն ֆիքսված ուղիղ գիծն է, որի շուրջ պտտվում է կիսաշրջանը։
# Գնդի կենտրոնը նույնն է, ինչ կիսաշրջանի կենտրոնը։
# Գնդի տրամագիծը ցանկացած ուղիղ գիծ է, որը անցնում է կենտրոնով և ավարտվում գնդի մակերևույթում։
# Կոնն այն ֆիգուրն է, որը ստացվում է, երբ ուղղանկյուն եռանկյան կողմերից մեկը մնում է ֆիքսված, և եռանկյունը պտտվում է։ Եթե ֆիքսված ուղիղ գիծը հավասար է եռանկյունի մյուս կողմին, կոնը կլինի ուղղանկյուն։
# Կոնի առանցքը այն ֆիքսված ուղիղ գիծն է, որի շուրջ պտտվում է եռանկյունը։
# Կոնի հիմքը այն շրջանն է, որը գծվում է պտտվող կողմի միջոցով։
# Գլանիկն այն ֆիգուրն է, որը ստացվում է, երբ ուղղանկյուն զուգահեռագծի կողմերից մեկը մնում է ֆիքսված, և զուգահեռագիծը պտտվում է։
# Գլանիկի առանցքը այն ֆիքսված ուղիղ գիծն է, որի շուրջ պտտվում է զուգահեռագիծը։
# Գլանիկի հիմքերը այն շրջաններն են, որոնք գծվում են երկու հակառակ կողմերով։
# Նման կոններն ու գլանիկներն են նրանք, որոնց առանցքները և հիմքերի տրամագծերը համեմատական են։
# Խորանարդը մարմնական ֆիգուր է, որը պարփակված է վեց հավասար քառակուսիներով։
# Ութանիստը մարմնական ֆիգուր է, որը պարփակված է ութ հավասար և հավասարակողմ եռանկյուններով։
# Իկոսանիստը մարմնական ֆիգուր է, որը պարփակված է քսան հավասար և հավասարակողմ եռանկյուններով։
# Դոդեկանիստը մարմնական ֆիգուր է, որը պարփակված է տասներկու հավասար, հավասարակողմ և հավասարանկյուն հնգանկյուններով։
==Պնդում 1==
Ուղիղ գծի մի մասը չի կարող գտնվել հարթության մեջ, իսկ մի մասը՝ ավելի բարձր հարթությունում։
Եթե երկու զուգահեռ ուղիղների վրա վերցրած պատահական կետերից երկուսը միացնենք, ապա ստացված ուղիղը, որը անցնում հնարավոր է այդ կետերով, կլինի նույն թող ուղիղ գծի AB մասը գտնվի հարթության մեջ, ինչ երկու զուգահեռ ուղիղները։իսկ BC մասը՝ ավելի բարձր հարթությունում։
Հարթության մեջ կլինի մի ուղիղ գիծ, որը շարունակական է AB-ի հետ։ Թող դա լինի BD։ Ուստի, AB-ն ընդհանուր հատված կլինի երկու (տարբեր) ուղիղ գծերի՝ ABC-ի և ABD-ի։ Սա անհնար է, քանի որ եթե գծենք շրջան B կենտրոնով և AB շառավղով, ապա շրջանագծի անիվները, որոնք կտրվեն ABC և ABD տրամագծերով, կլինեն անհավասար։
[[Պատկեր:01.png|center|350px]]
[[Պատկեր:Նկար-1.png]]Ուստի, ուղիղ գծի մի մասը չի կարող գտնվել հարթության մեջ, իսկ մի մասը՝ ավելի բարձր հարթությունում։Սա այն էր, ինչ անհրաժեշտ էր ապացուցել։
==Պնդում 2==
Եթե երկու ուղիղ գծեր հատում են իրար, ապա դրանք գտնվում են մեկ հարթության մեջ, և այդ գծերով կազմված ցանկացած եռանկյուն գտնվում է մեկ հարթության մեջ։
[[Պատկեր:2.png|center|350px]]
AB և CD Թող երկու զուգահեռ ուղիղներ են, իսկ E և F կամայական կետեր են համապատասխանաբար ուղիղ գծերը AB և CD ուղիղներից։ Ուղիղը, որը միացնում է -ն հատեն իրար E և F կետերը, գտնվում է նույն հարթության մեջ, ինչ զուգահեռ ուղիղները։Եթե դա այդպես չէ, և հնարավոր էկետում։ Ասում եմ, որ ուղիղը անցնի ավելի բարձր հարթությամբ, թող դա լինի EGF հարթությունը։ Այսպիսով, այն կունենա ուղիղ հատված EF՝ հենակետային հարթության մեջ [Պնդ. 11.3]։ Հետևաբար, երկու ուղիղներ՝ EGFAB-ն և EFCD(նույն E և F կետերով անցնող) կսահմանափակեն ինչ-որ տարածքգտնվում են մեկ հարթության մեջ, ինչը անհնար է։Հանգունորեն, E և F կետերով անցնող ուղիղը այդ գծերով կազմված ցանկացած եռանկյուն գտնվում է նույն մեկ հարթության մեջ, ինչ AB և CD զուգահեռ ուղիղները։մեջ։
''ԱյսպիսովԹող պատահական F և G կետերը վերցված լինեն EC և EB գծերի վրա (համապատասխանաբար)։ Թող CB-ն և FG-ն միացված լինեն, և թող FH-ն և GK-ն գծվեն։ Ասում եմ, նախ և առաջ, որ եռանկյուն ECB-ն գտնվում է մեկ (հիմնական) հարթության մեջ։ Քանի որ եթե կա երկու զուգահեռ եռանկյուն ECB-ի մի մասը, օրինակ՝ FHC կամ GBK, գտնվում է հիմնական հարթության մեջ, իսկ մնացած մասը՝ այլ հարթությունում, ապա EC կամ EB ուղիղգծերից մեկի մի մասը նույնպես կլինի հիմնական հարթության մեջ, և կամայական կետ նրանցից յուրաքանչյուրի վրաիսկ մի մասը՝ այլ հարթությունում։ Եվ եթե եռանկյուն ECB-ի FCBG մասը գտնվում է հիմնական հարթության մեջ, իսկ մնացած մասը՝ այլ հարթությունում, ապա ուղիղըEC և EB ուղիղ գծերից երկուսն էլ կունենան մասեր, որը կմիացնի այդ երկու կետերըորոնք կլինեն հիմնական հարթության մեջ, կլինի նույն իսկ մասեր՝ այլ հարթությունում։ Սա արդեն ցույց է տրվել որպես անհնարին [Տե՛ս "Տարրեր" 11.1]։ Ուստի, եռանկյուն ECB-ն գտնվում է մեկ հարթության մեջ։ Եվ այն հարթությունում, որտեղ գտնվում է եռանկյուն ECB-ն, այնտեղ կլինեն EC և EB գծերը։ Եվ այն հարթությունում, որտեղ գտնվում են EC և EB գծերը, այնտեղ կլինեն AB և CD ուղիղ գծերը նույնպես [Տե՛ս "Տարրեր" 11.1]։ Ուստի, AB և CD ուղիղ գծերը գտնվում են մեկ հարթության մեջ, և այդ գծերով կազմված ցանկացած եռանկյուն գտնվում է մեկ հարթության մեջ։ Սա այն էր, ինչ զուգահեռ ուղիղները։ Որը վերջինիս պահանջվում անհրաժեշտ էր ցույց տալ։''ապացուցել։
==Պնդում 3==
Եթե երկու հարթություններ հատում են իրար, ապա դրանց ընդհանուր հատվածը ուղիղ գիծ է։
[[Պատկեր:3.png|center|350px]]
Թող երկու հարթությունները՝ AB-ն և BC-ն, հատեն իրար, և թող դրանց ընդհանուր հատվածը լինի DB գիծը։ Ասում եմ, որ DB գիծը ուղիղ է։
== Պնդում 8 ==Եթե ոչ, թող DEB ուղիղ գիծը միացվի D կետից B կետին AB հարթության մեջ, և DF B ուղիղ գիծը՝ BC հարթության մեջ։ Ուստի, DEB և DFB ուղիղ գծերը կունենան նույն ծայրերը և ակնհայտորեն կփակեն տարածք։ Սա անհնար է։ Ուստի, DEB և DFB գծերը չեն կարող լինել ուղիղ գծեր։ Նույն կերպ կարելի է ցույց տալ, որ D կետից B կետին հնարավոր չէ միացնել որևէ այլ ուղիղ գիծ, բացի DB-ից, որը AB և BC հարթությունների ընդհանուր հատվածն է։
Ուստի, եթե երկու հարթություններ հատում են իրար, ապա դրանց ընդհանուր հատվածը ուղիղ գիծ է։ Սա այն էր, ինչ անհրաժեշտ էր ապացուցել։
==Պնդում 4==Եթե երկու ուղիղներ զուգահեռ են, և նրանցից մեկը ուղիղ անկյուն գիծը տեղադրված է կազմում ինչ որ հարթության հետուղղահայաց երկու ուղիղ գծերին, որոնք հատում են իրար ընդհանուր հատման կետում, ապա մյուս ուղիղը նույնպես ուղղահայաց այն կլինի նաև ուղղահայաց այդ գծերով անցնող հարթությանը։[[Պատկեր:4.png|center|350px]]
Թող ուղիղ գիծը՝ EF-ը, տեղադրված լինի ուղղահայաց AB և CD գծերին, որոնք հատում են իրար E կետում։ Ասում եմ, որ EF-ը կլինի նաև ուղղահայաց AB և CD գծերով անցնող հարթությանը։
[[Պատկեր:ՆկարԹող AE, EB, CE և ED հատվածները կտրված լինեն (այդ երկու գծերից այնպես, որ լինեն) հավասար։ Թող GEH գիծը գծվի պատահականորեն E կետով (AB և CD գծերով անցնող հարթության մեջ)։ Եվ թող AD-2.png]]ն և CB-ն միացվեն։ Ավելին, թող FA, FG, FD, FC, FH և FB գծերը միացվեն EF գծի պատահական F կետից։
Քանի որ AE և ED հատվածները հավասար են CE և EB հատվածներին, և դրանք պարփակում են հավասար անկյուններ [Տե՛ս "Տարրեր" 1.15], AD հիմքը հավասար է CB հիմքին, և AED եռանկյունը հավասար է CEB եռանկյունին [Տե՛ս "Տարրեր" 1.4]։ Ուստի, DAE անկյունը հավասար է EBC անկյունին։ Եվ AEG անկյունը նույնպես հավասար է BEH անկյունին [Տե՛ս "Տարրեր" 1.15]։ Այսպիսով, AGE և BEH եռանկյունները ունեն երկու անկյուններ, որոնք հավասար են երկու անկյուններին (համապատասխանաբար), և մեկ կողմ, որը հավասար է մեկ կողմին՝ այդ անկյուններով, (այսինքն՝) AE և EB։ Ուստի, դրանք կունենան նաև մնացած կողմերը հավասար [Տե՛ս "Տարրեր" 1.26]։ Ուստի, GE-ն հավասար է EH-ին, իսկ AG-ն՝ BH-ին։ Եվ քանի որ AE-ն հավասար է EB-ին, իսկ FE-ն ընդհանուր է և ուղղահայաց, FA հիմքը նույնպես հավասար է FB հիմքին [Տե՛ս "Տարրեր" 1.4]։ Նույն պատճառներով, FC-ն նույնպես հավասար է FD-ին։ Եվ քանի որ AD-ն հավասար է CB-ին, իսկ FA-ն նույնպես հավասար է FB-ին, FA և AD երկու գծերը հավասար են FB և BC երկու գծերին համապատասխանաբար։ Իսկ FD հիմքը ցույց է տրվել, որ հավասար է FC հիմքին։ Ուստի, FAD անկյունը նույնպես հավասար է FBC անկյունին [Տե՛ս "Տարրեր" 1.8]։ Եվ կրկին, քանի որ AG-ն ցույց է տրվել, որ հավասար է BH-ին, իսկ FA-ն նույնպես հավասար է FB-ին, FA և AG երկու գծերը հավասար են FB և BH երկու գծերին (համապատասխանաբար)։ Եվ FAG անկյունը ցույց է տրվել, որ հավասար է FBH անկյունին։ Ուստի, FG հիմքը հավասար է FH հիմքին [Տե՛ս "Տարրեր" 1.4]։ Եվ կրկին, քանի որ GE-ն ցույց է տրվել, որ հավասար է EH-ին, իսկ EF-ը ընդհանուր է, GE և EF երկու գծերը հավասար են HE և EF երկու գծերին (համապատասխանաբար)։ Եվ FG հիմքը հավասար է FH հիմքին։ Ուստի, GEF անկյունը հավասար է HEF անկյունին [Տե՛ս "Տարրեր" 1.8]։ GEF և HEF անկյուններից յուրաքանչյուրը, հետևաբար, ուղղանկյուններ են [Տե՛ս "Տարրեր" 1.10]։ Ուստի, FE-ն ուղղահայաց է GH գծին, որը պատահականորեն գծվել է E կետով (AB և AC գծերով անցնող հարթության մեջ)։ Նույն կերպ կարելի է ցույց տալ, որ FE-ն ուղղանկյուններ կկազմի բոլոր գծերի հետ, որոնք միացված են դրան և գտնվում են հարթության մեջ։ Եվ գիծը ուղղահայաց է հարթությանը, երբ այն ուղղանկյուններ է կազմում բոլոր գծերի հետ, որոնք միացված են դրան և գտնվում են հարթությունում [Տե՛ս "Տարրեր" 11.3 սահմանում]։ Ուստի, FE-ն ուղղահայաց է հիմնական հարթությանը։ Իսկ հիմնական հարթությունը այն հարթությունն է, որը անցնում է AB և CD ուղիղ գծերով։ Ուստի, FE-ն ուղղահայաց է AB և CD գծերով անցնող հարթությանը։
 
Ուստի, եթե ուղիղ գիծը տեղադրված է ուղղահայաց երկու ուղիղ գծերին, որոնք հատում են իրար ընդհանուր հատման կետում, ապա այն կլինի նաև ուղղահայաց այդ գծերով անցնող հարթությանը։ Սա այն էր, ինչ անհրաժեշտ էր ապացուցել։
 
==Պնդում 5==
Եթե ուղիղ գիծը կանգնեցված է ուղղանկյուն երեք ուղիղ գծերին, որոնք հատում են մեկը մյուսին ընդհանուր հատման կետում, ապա երեք ուղիղ գծերը գտնվում են նույն հարթության մեջ։
[[Պատկեր:5.png|center|350px]]
 
Թող AB ուղիղ գիծը կանգնեցված լինի ուղղանկյուն BC, BD և BE երեք ուղիղ գծերին ընդհանուր հատման կետում՝ B։ Ասում եմ, որ BC, BD և BE ուղիղ գծերը գտնվում են նույն հարթության մեջ։
 
Եթե ոչ, և հնարավոր է, թող BD-ն և BE-ն գտնվեն հենքային հարթության մեջ, իսկ BC-ն՝ ավելի բարձր (հարթության մեջ)։ Եվ թող AB և BC ուղիղ գծերով անցնող հարթությունը շարունակված լինի։ Այսպիսով, այն հենքային հարթության հետ կունենա ուղիղ գիծ որպես ընդհանուր հատում [Տե՛ս "Տարրեր" 11.3-ի սահմանումը]։ Թող այն լինի BF։ Ուստի, AB, BC և BF երեք ուղիղ գծերը գտնվում են նույն հարթության մեջ՝ (այսինքն) AB և BC ուղիղ գծերով անցնող հարթության մեջ։ Եվ քանի որ AB-ն ուղղանկյուն է ինչպես BD-ին, այնպես էլ BE-ին, AB-ն հետևաբար ուղղանկյուն է նաև BD և BE ուղիղ գծերով անցնող հարթությանը [Տե՛ս "Տարրեր" 11.4]։ Եվ BD և BE ուղիղ գծերով անցնող հարթությունը հենքային հարթությունն է։ Ուստի, AB-ն ուղղանկյուն է հենքային հարթությանը։ Հետևաբար, AB-ն ուղղանկյուն կլինի նաև բոլոր այն ուղիղ գծերին, որոնք միացված են դրան և գտնվում են հենքային հարթությունում [Տե՛ս "Տարրեր" 11.3-ի սահմանումը]։ Եվ BF, որը գտնվում է հենքային հարթությունում, միացված է դրան։ Ուստի, ABF անկյունը ուղղանկյուն է։ Իսկ ABC-ն նույնպես ուղղանկյուն է ենթադրվել։ Ուստի, ABF անկյունը հավասար է ABC անկյանը։ Իսկ դրանք գտնվում են նույն հարթության մեջ։ Սա անհնար է։ Ուստի, BC-ն ավելի բարձր հարթությունում չէ։ Ուստի, BC, BD և BE երեք ուղիղ գծերը գտնվում են նույն հարթության մեջ։
 
Այսպիսով, եթե ուղիղ գիծը կանգնեցված է ուղղանկյուն երեք ուղիղ գծերին, որոնք հատում են մեկը մյուսին ընդհանուր հատման կետում, ապա երեք ուղիղ գծերը գտնվում են նույն հարթության մեջ։ Սա այն էր, ինչ անհրաժեշտ էր ապացուցել։
 
==Պնդում 6==
Եթե երկու ուղիղ գիծ ուղղանկյուն են նույն հարթությանը, ապա ուղիղ գծերը կլինեն զուգահեռ։
[[Պատկեր:6.png|center|350px]]
 
Թող AB և CD ուղիղ գծերը ուղղանկյուն լինեն հենքային հարթությանը։ Ասում եմ, որ AB-ն զուգահեռ է CD-ին։
 
Թող նրանք հատեն հենքային հարթությունը համապատասխանաբար B և D կետերում։ Եվ թող BD ուղիղ գիծը միացված լինի։ Եվ թող DE-ն կառուցված լինի ուղղանկյուն BD-ին հենքային հարթությունում։ Եվ թող DE-ն հավասար լինի AB-ին։ Եվ թող BE, AE և AD ուղիղ գծերը միացված լինեն։
 
Եվ քանի որ AB-ն ուղղանկյուն է հենքային հարթությանը, այն [հետևաբար] ուղղանկյուն կլինի նաև բոլոր այն ուղիղ գծերին, որոնք միացված են դրան և գտնվում են հենքային հարթությունում [Տե՛ս "Տարրեր" 11.3-ի սահմանումը]։
 
Եվ BD և BE, որոնք գտնվում են հենքային հարթությունում, յուրաքանչյուրը միացված են AB-ին։ Ուստի, ABD և ABE անկյուններից յուրաքանչյուրը ուղղանկյուն է։ Ուստի, նույն պատճառներով, CDB և CDE անկյուններից յուրաքանչյուրը նույնպես ուղղանկյուն է։ Եվ քանի որ AB-ն հավասար է DE-ին, իսկ BD-ն ընդհանուր է, AB և BD երկու ուղիղ գծերը հավասար են ED և DB երկու ուղիղ գծերին (համապատասխանաբար)։ Եվ դրանք ընդգրկում են ուղղանկյուններ։ Ուստի, AD հիմքը հավասար է BE հիմքին [Տե՛ս "Տարրեր" 1.4]։ Եվ քանի որ AB-ն հավասար է DE-ին, իսկ AD-ն նույնպես հավասար է BE-ին, AB և BE երկու ուղիղ գծերը, հետևաբար, հավասար են ED և DA երկու ուղիղ գծերին (համապատասխանաբար)։ Եվ նրանց հիմքը AE-ն ընդհանուր է։ Ուստի, ABE անկյունը հավասար է EDA անկյանը [Տե՛ս "Տարրեր" 1.8]։ Եվ ABE-ն ուղղանկյուն է։ Ուստի, EDA-ն նույնպես ուղղանկյուն է։ ED-ն, հետևաբար, ուղղանկյուն է DA-ին։ Եվ այն նաև ուղղանկյուն է ինչպես BD-ին, այնպես էլ DC-ին։ Ուստի, ED-ն ուղղանկյուն է BD, DA և DC երեք ուղիղ գծերին ընդհանուր հատման կետում։ Ուստի, BD, DA և DC երեք ուղիղ գծերը գտնվում են նույն հարթության մեջ [Տե՛ս "Տարրեր" 11.5]։ Եվ որի (հարթության) մեջ BD և DA (գտնվում են), նույն հարթության մեջ AB-ն նույնպես (կգտնվի)։ Քանի որ ցանկացած եռանկյուն գտնվում է մեկ հարթության մեջ [Տե՛ս "Տարրեր" 11.2]։ Եվ ABD և BDC անկյուններից յուրաքանչյուրը ուղղանկյուն է։ Ուստի, AB-ն զուգահեռ է CD-ին [Տե՛ս "Տարրեր" 1.28]։
 
Այսպիսով, եթե երկու ուղիղ գիծ ուղղանկյուն են նույն հարթությանը, ապա ուղիղ գծերը կլինեն զուգահեռ։ Սա այն էր, ինչ անհրաժեշտ էր ապացուցել։
 
 
 
== Pages 431 - 455 ==
 
== Պնդում 7 ==
 
Եթե երկու զուգահեռ ուղիղների վրա վերցրած պատահական կետերից երկուսը միացնենք, ապա ստացված ուղիղը, որը անցնում է այդ կետերով, կլինի նույն հարթության մեջ, ինչ երկու զուգահեռ ուղիղները։
 
[[Պատկեր:Նկար-1.png|center|300px]]
 
AB և CD երկու զուգահեռ ուղիղներ են, իսկ E և F կամայական կետեր են համապատասխանաբար AB և CD ուղիղներից։ Ուղիղը, որը միացնում է E և F կետերը, գտնվում է նույն հարթության մեջ, ինչ զուգահեռ ուղիղները։
Եթե դա այդպես չէ, և հնարավոր է, որ ուղիղը անցնի ավելի բարձր հարթությամբ, թող դա լինի EGF հարթությունը։ Այսպիսով, այն կունենա ուղիղ հատված EF՝ հենակետային հարթության մեջ [Պնդ. 11.3]։ Հետևաբար, երկու ուղիղներ՝ EGF-ն և EF-ն (նույն E և F կետերով անցնող) կսահմանափակեն ինչ-որ տարածք, ինչը անհնար է։Հանգունորեն, E և F կետերով անցնող ուղիղը գտնվում է նույն հարթության մեջ, ինչ AB և CD զուգահեռ ուղիղները։
 
Այսպիսով, եթե կա երկու զուգահեռ ուղիղ, և կամայական կետ նրանցից յուրաքանչյուրի վրա, ապա ուղիղը, որը կմիացնի այդ երկու կետերը, կլինի նույն հարթության մեջ, ինչ զուգահեռ ուղիղները։ Որը վերջինիս պահանջվում էր ցույց տալ։
 
== Պնդում 8 ==
 
Եթե երկու ուղիղներ զուգահեռ են, և նրանցից մեկը ուղիղ անկյուն է կազմում ինչ որ հարթության հետ, ապա մյուս ուղիղը նույնպես ուղղահայաց կլինի այդ հարթությանը։
 
[[Պատկեր:Նկար-2.png|center|300px]]
AB և CD երկու զուգահեռ ուղիղներ են, և նրանցից մեկը՝ AB, լինի ուղղահայաց դիտարկվող հարթությանը։ Ապա, մյուսը՝ CD, նույնպես կլինի ուղղահայաց նույն հարթությանը։
Եվ քանի որ DE և DB ուղիղներով անցնող հարթությունը դիտարկվող հարթությունն է, CD ուղիղը ուղղահայաց է նաև դիտարկվող հարթությանը։
''Հետևաբար, եթե երկու ուղիղներ զուգահեռ են, և դրանցից մեկը ուղղահայաց է որևէ հարթության, ապա մյուսը նույնպես կլինի ուղղահայաց նույն հարթությանը։ Որն էլ անհրաժեշտ էր ցույց տալ։''
== Պնդում 9 ==
Երկու ուղիղներ զուգահեռ են երրորդ ուղղին որը նրանց հետ նույն հարթության մեջ չի գտնվում, ապա այդ ուղիղները միմյանց նկատմամբ նույնպես զուգահեռ են։
[[Պատկեր:Նկար-3.png|center|300px]]
== Պնդում 9 ==AB և CD ուղիղներից յուրաքանչյուրը զուգահեռ է EF ուղղին, որը նույն հարթության մեջ չէ։ Ցույց տանք որ AB և CD ուղիղները զուգահեռ են։ Պատահականորեն վերցնենք մի G կետ EF ուղղի վրա։ GH ուղիղը EF ուղղի հետ կազմում է ուղիղ անկյուն EF և AB ուղիղներով անցնող հարթության մեջ։ Եվ EF-ն ուղղահայաց է GK ուղղին՝ FE և CD ուղիղներով անցնող հարթության վրա:
Եվ քանի որ EF ուղիղը ուղղահայաց է GH-ին և GK-ին, ապա EF-ն ուղղահայաց է նաև GH և GK ուղիղներով անցնող հարթությանը [Պնդ․ 11.4]: Եվ EF ուղիղը AB-ին զուգահեռ է: Ուստի AB-ն նույնպես ուղղահայաց է HGK հարթությանը [Պնդ․ 11.8]: Հանգունորեն CD-ն նույնպես ուղղահայաց է HGK հարթությանը:
Երկու ուղիղներ զուգահեռ Արդյունքում՝ AB և CD ուղիղները ուղղահայաց են երրորդ ուղղին որը նրանց հետ HGK հարթությանը: Իսկ եթե երկու ուղիղներ նույն հարթության մեջ չի գտնվումհարթությանն ուղղահայաց են, ապա այդ ուղիղները միմյանց նկատմամբ նույնպես զուգահեռ են։են [Պնդ․ 11․6]: Ուստի AB-ն զուգահեռ է CD-ին։ Ինչ պետք էր ապացուցել։
[[Պատկեր:Նկար-3.png]]== Պնդում 10 ==
AB և CD ուղիղներից յուրաքանչյուրը Եթե երկու հատվող ուղիղներ զուգահեռ է EF ուղղին, որը նույն են այլ հարթության մեջ չէ։ Ցույց տանք որ AB և CD ուղիղները զուգահեռ են։ Պատահականորեն վերցնենք մի G կետ EF ուղղի վրա։ GH ուղիղը EF ուղղի հետ կազմում է ուղիղ անկյուն EF և AB ուղիղներով անցնող հարթության մեջ։ Եվ EF-ն ուղղահայաց է GK ուղղին՝ FE և CD ուղիղներով անցնող հարթության վրա:գտնվող երկու հատվող ուղիղների, ապա հարթությունները պարունակում են հավասար անկյուններ։
[[Պատկեր:Նկար-4.png|center|300px]]
Իրար միացած երկու ուղիղները՝ AB և BC, զուգահեռ են (համապատասխանաբար) միմյանց միացած երկու ուղիղների՝ DE և EF որոնք վերջիններս ընկած չեն AB և BC ուղիղներով անցնող հարթությանը ։Ցույց տանք, որ ABC անկյունը հավասար է DEF անկյանը:BA, BC, ED և EF ուղիղները կտրենք (այնպես, որ համապատասխանաբար հավասար լինեն միմյանց): Միացնենք AD, CF, BE, AC և DF հատվածները:Եվ քանի որ EF BA ուղիղը ուղղահայաց հավասար և զուգահեռ է GH-ին և GKED-ին, ապա EF-ն ուղղահայաց է նաև GH Հետևաբար AD ուղիղը, նույնպես հավասար և GK ուղիղներով անցնող հարթությանը զուգահեռ է BE ուղղին [Պնդ․ 11Պնդ.41.33]: Եվ EF Հանգունորեն CF ուղիղը AB նույնպես հավասար և զուգահեռ է BE-ին : Այսպիսով, AD և CF հատվածներից յուրաքանչյուրը հավասար և զուգահեռ են BE-ին: Նույն ուղղին զուգահեռ ուղիղները, որոնք նրա հետ նույն հարթության մեջ չեն, զուգահեռ են միմյանց [Պնդ. 11.9]։ Այսպիսով, AD հատվածը զուգահեռ էև հավասար է CF-ին: Ուստի ABAC և DF միացնենք նրանց: Այսպիսով, AC-ն ը նույնպես ուղղահայաց հավասար է HGK հարթությանը և զուգահեռ DF հատվածին [Պնդ․ 11Պնդ.81.33]: Հանգունորեն CDԵվ քանի որ երկու հատվածներ ABնույնպես ուղղահայաց և BC-ն հավասար են երկու հատվածներին՝ DE-ին և EF-ին (համապատասխանաբար), իսկ AC հիմքը հավասար է HGK հարթությանըDF հիմքին, այսպիսով ABC անկյունն հավասար է DEF անկյանը [Պնդ. 1.8]:
''Արդյունքում՝ AB և CD Հետևաբար, եթե միմյանց միացված երկու ուղիղները ուղղահայաց (համապատասխանաբար) զուգահեռ են HGK հարթությանը: Իսկ եթե միմյանց միացած երկու ուղիղներ ուղիղներին, որոնք ընկած չեն նույն հարթությանն ուղղահայաց ենհարթության մեջ ինչ որ սկզբնական երկու ուղիղները, ապա այդ ուղիղները զուգահեռ են [Պնդ․ 11․6]: Ուստի AB-ն զուգահեռ է CD-ին։ Ինչ պետք դրանք կպարունակեն հավասար անկյուններ։ Որը անհրաժեշտ էր ապացուցել։''ցույց տալ։
== Պնդում 11 ==
Կետից հարթությանը ուղղահայաց ուղղի կառուցումը։
[[Պատկեր:Նկար-11.png|center|300px]]
== Պնդում 10 ==A կետը դիտարկվող կետն է: Այսպիսով, պահանջվում է ուղղահայաց ուղիղ գծել A կետից հարթությանը: Պատահական BC ուղիղ գծենք դիտարկվող հարթությունում, և AD ուղիղը գծենք BC-ին ուղղահայաց A կետից [Պնդ. 1.12]: Հետևաբար, եթե AD ուղիղը նույնպես ուղղահայաց է դիտարկվող հարթությանը, ապա տեղի կունենա այն, ինչ նախատեսված էր:Իսկ, եթե ոչ, D կետից՝ դիտարկվող հարթության մեջ BC ուղղին ուղահայաց DE ուղիղը գծենք [Պնդ. 1.11], և AF ուղիղը գծենք A կետից DE ուղղին ուղղահայաց վերջիններս կհատի DE ուղղին F կետում[Պնդ. 1.12], և F կետով անցնող GH ուղիղը գծենք, որը զուգահեռ է BC ուղղին [Պնդ. 1.31]:
Եվ քանի որ BC-ն ուղիղ անկյուն է կազմում DA և DE ուղիղներից յուրաքանչյուրի հետ,հետևաբար BC-ն, ուղղահայաց է EDA հարթությանը [Պնդ. 11.4]: Իսկ GH ուղիղը զուգահեռ է BC-ին։ Եթե երկու ուղիղները զուգահեռ են, և դրանցից մեկը ուղղահայաց է ինչ-որ հարթությանը, ապա մյուսը նույնպես կլինի նույն հարթությանն ուղղահայաց[Պնդ. 11.8]:Այսպիսով, GH ուղիղը նույնպես ուղղահայաց է ED և DA ուղիղներով անցնող հարթությունը։
Այսպիսով, GH ուղիղը ուղիղ անկյուն է կազմում իրեն միացած բոլոր ուղիղների հետ, որոնք նույնպես ED և AD ուղիղներով անցնող հարթության մեջ են [Սահմ. 11.3]: Եվ AF-ն, որը գտնվում է ED և AD ուղիղներով անցնող հարթության մեջ, միացված է այդ ուղղին: Այսպիսով, GH և AF ուղիղներըուղղահայաց են: Հետևաբար, AF-ն ուղղահայաց է HG ուղղին: AF-ն նույնպես ուղղահայաց է DE ուղղին: Այսպիսով, AF-ն ուղղահայաց է GH և DE ուղիղներից յուրաքանչյուրին: Եվ եթե ուղիղը կազմում են ուղիղ անկյուն երկու հատվող ուղիղների հետ, ապա այն ուղղահայաց կլինի այդ ուղիղներով անցնող հարթությանը [Պնդ. 11.4]: Այսպիսով, FA-ն ուղղահայաց է ED և GH ուղիղներով անցնող հարթությանը: Իսկ ED-ի և GH-ի ուղիղներով անցնող հարթությունը հենց դիտարկվող հարթությունն էր: Այսպիսով, AF ուղիղը ուղղահայաց է դիտարկվող հարթությանը:
Եթե երկու հատվող ուղիղներ զուգահեռ են այլ հարթության մեջ գտնվող երկու հատվող ուղիղներիԱյսպիսով, ապա հարթությունները պարունակում են հավասար անկյուններ։A կետով անցնող AF ուղիղը ուղղահայաց է դիտարկվող հարթությանը: Ինչը հենց պահանջվում էր կառուցել:
[[Պատկեր:Նկար-4.png]]== Պնդում 12 ==
Իրար միացած երկու ուղիղները՝ AB և BCՏվյալ կետից, զուգահեռ են (համապատասխանաբար) միմյանց միացած երկու ուղիղների՝ DE և EF որոնք վերջիններս ընկած չեն AB և BC ուղիղներով անցնող դիտարկվող հարթությանը ։Ցույց տանք, որ ABC անկյունը հավասար է DEF անկյանը:BA, BC, ED և EF ուղիղները կտրենք (այնպես, որ համապատասխանաբար հավասար լինեն միմյանց): Միացնենք AD, CF, BE, AC և DF հատվածները:Եվ քանի որ BA ուղիղը հավասար և զուգահեռ է ED-ին, Հետևաբար AD ուղիղը, նույնպես հավասար և զուգահեռ է BE ուղղին [Պնդ. 1.33]: Հանգունորեն CF ուղիղը նույնպես հավասար և զուգահեռ է BE-ին: Այսպիսով, AD և CF հատվածներից յուրաքանչյուրը հավասար և զուգահեռ են BE-ին: Նույն ուղղին զուգահեռ ուղիղները, որոնք նրա հետ նույն հարթության մեջ չեն, զուգահեռ են միմյանց [Պնդ. 11.9]։ Այսպիսով, AD հատվածը զուգահեռ է և հավասար է CF-ին: AC և DF միացնենք նրանց: Այսպիսով, AC-ը նույնպես հավասար է և զուգահեռ DF հատվածին [Պնդ. 1.33]: Եվ քանի որ երկու հատվածներ AB-ն և BC-ն հավասար են երկու հատվածներին՝ DE-ին և EF-ին (համապատասխանաբար), իսկ AC հիմքը հավասար է DF հիմքին, այսպիսով ABC անկյունն հավասար է DEF անկյանը [Պնդ. 1.8]:տարված ուղղահայացի կառուցումը։
''Հետևաբար, եթե միմյանց միացված երկու ուղիղները (համապատասխանաբար) զուգահեռ են միմյանց միացած երկու ուղիղներին, որոնք ընկած չեն նույն հարթության մեջ ինչ որ սկզբնական երկու ուղիղները, ապա դրանք կպարունակեն հավասար անկյուններ։ Որը անհրաժեշտ էր ցույց տալ։''[[Պատկեր:Նկար-12.png|center|300px]]
Տրված հարթությունը դիտարկվող հարթությունն է, իսկ A-ն այդ հարթությանը պատկանող կետ: Այսպիսով, պահանջվում է A կետով անցնող և դիտարկվող հարթությանը ուղղահայաց ուղիղ կառուցել:Կամայական B կետից տանենք ուղղահայաց դիտարկվող հարթությանը, որը կհատի հարթությունը C կետում [Պնդ. 11.11]: BC-ին զուգահեռ և A կետով անցնող ուղիղ գծենք AD-ն [Պնդ. 1.31]:Քանի որ AD-ն և CB-ն երկու զուգահեռ ուղիղներ են, և դրանցից մեկը՝ BC-ն, ուղղահայաց է դիտարկվող հարթությանը հետևաբար, AD ուղիղը նույնպես ուղղահայաց է դիտարկվող հարթությանը [Պնդ. 11.8]:
Հետևաբար AD ուղիղը A կետով անցնող և հարթությանը ուղղահայաց ուղիղ է։ Ինչը պահանջվում էր կառուցել։
== Պնդում 13 ==
== Պնդում 11 ==Երկու տարբեր ուղիղներ չեն կարող անցնել մի կետով և միևնույն ժամանակ ուղղահայաց լինել նույն հարթության նույն կողմին։
[[Պատկեր:Նկար-13.png|center|300px]]
Կետից Ենթադրենք հնարավոր է, ուրեմն երկու ուղիղներ AB և AC տեղադրենք միևնույն A կետում՝ դիտարկվող հարթությանը ուղղահայաց ուղղի կառուցումը։: Գծենք BA և AC ուղիղներով անցնող հարթություն: Այսպիսով, այն կհատի դիտարկվող հարթությունը A կետով անցնող DAE ուղղով[Պնդ. 11.3]: Այսպիսով, AB, AC և DAE ուղիղները ընկած են մեկ հարթության մեջ, և քանի որ CA-ն ուղղահայաց է դիտարկվող հարթությանը, այդպիսով այն նաև ուղղահայաց է դիտարկվող հարթության մեջ գտնվող բոլոր ուղիղներին[Պնդ. 11.3]: DAE-ն, որը գտնվում է դիտարկվող հարթության մեջ, միացված է դրան։Հետևաբար, CAE անկյունը ուղիղ է: Հանգունորեն BAE անկյունը նույնպես ուղիղ է։ Այսպիսով, CAE անկյունը հավասար է BAE անկյանը: Եվ նրանք մեկ հարթության մեջ են։ Ինչը անհնար է։
Այսպիսով, միևնույն կետով անցնող երկու (տարբեր) ուղիղներ չեն կարող, նույն հարթության, նույն կողմին ուղղահայաց լինել: Ինչը հենց պահանջվում էր ցույց տալ:
[[Պատկեր:Նկար-11.png]]== Պնդում 14 ==
Հարթությունները որոնք միևնույն ուղղին ուղղահայաց են ապա միմյանց զուգահեռ են։
A կետը դիտարկվող կետն է[[Պատկեր: Այսպիսով, պահանջվում է ուղղահայաց ուղիղ գծել A կետից հարթությանը: Պատահական BC ուղիղ գծենք դիտարկվող հարթությունում, և AD ուղիղը գծենք BCՆկար-ին ուղղահայաց A կետից [Պնդ14. 1.12png|center|300px]: Հետևաբար, եթե AD ուղիղը նույնպես ուղղահայաց է դիտարկվող հարթությանը, ապա տեղի կունենա այն, ինչ նախատեսված էր:Իսկ, եթե ոչ, D կետից՝ դիտարկվող հարթության մեջ BC ուղղին ուղահայաց DE ուղիղը գծենք [Պնդ. 1.11], և AF ուղիղը գծենք A կետից DE ուղղին ուղղահայաց վերջիններս կհատի DE ուղղին F կետում[Պնդ. 1.12], և F կետով անցնող GH ուղիղը գծենք, որը զուգահեռ է BC ուղղին [Պնդ. 1.31]:
Եվ քանի որ BCABկամայական ուղիղ անկյուն է կազմում DA որը ուղղահայաց է CD և DE ուղիղներից յուրաքանչյուրի հետEF հարթություններին։ Ցույց տանք,հետևաբար BC-ն, ուղղահայաց է EDA հարթությանը որ այդ հարթությունները զուգահեռ են։Հակառակ դեպքում հարթությունները կհատվեն։ Նրանք կհատվեն մի ընդհանուր ուղղով [Պնդ. 11.43]: Իսկ Ենթադրենք GH ուղիղը զուգահեռ է BC-ին։ Եթե երկու ուղիղները զուգահեռ են, ն հարթությունների ընդհանուր ուղիղն է։ Կամայական K կետ վերցնենք GH ուղղի վրա: Միացնենք AK և դրանցից մեկը BK հատվածները։AB-ն ուղղահայաց է ինչ-որ EF հարթությանըև BK ուղղին։Հետևաբար, ապա մյուսը ABK անկյունը ուղիղ է: Նույն պատճառներով BAK անկյունը նույնպես կլինի նույն հարթությանն ուղղահայաց[Պնդ. 11.8]:ուղիղ է։ Այսպիսով, GH ուղիղը նույնպես ուղղահայաց է ED ABK եռանկյան ABK և DA ուղիղներով անցնող հարթությունը։Այսպիսով, GH ուղիղը BAK երկու անկյունը ուղիղ անկյուն են: Ինչը անհնար է կազմում իրեն միացած բոլոր ուղիղների հետ, որոնք նույնպես ED և AD ուղիղներով անցնող հարթության մեջ են [ՍահմՊնդ. 111.317]: Եվ AF-նՀետևաբար, որը գտնվում է ED CD և AD ուղիղներով անցնող հարթության մեջEF հարթությունները, միացված է այդ ուղղին: Այսպիսով, GH չեն հատվում՝ CD և AF ուղիղներըուղղահայաց EF հարթությունները զուգահեռ են: Հետևաբար, AF-ն ուղղահայաց է HG ուղղին: AF-ն նույնպես ուղղահայաց է DE ուղղին: Այսպիսով, AF-ն ուղղահայաց է GH և DE ուղիղներից յուրաքանչյուրին: Եվ եթե ուղիղը կազմում են ուղիղ անկյուն երկու հատվող ուղիղների հետ, ապա այն ուղղահայաց կլինի այդ ուղիղներով անցնող հարթությանը [ՊնդՍահմ. 11.48]: Այսպիսով, FA-ն ուղղահայաց է ED և GH ուղիղներով անցնող հարթությանը: Իսկ ED-ի և GH-ի ուղիղներով անցնող հարթությունը հենց դիտարկվող հարթությունն էր: Այսպիսով, AF ուղիղը ուղղահայաց է դիտարկվող հարթությանը:
Այսպիսով, Հարթությունները որոնք միևնույն ուղղին ուղղահայաց են ապա այդ հարթությունները զուգահեռ են: Ինչ պահանջվում էր ցույց տալ:
''Այսպիսով, A կետով անցնող AF ուղիղը ուղղահայաց է դիտարկվող հարթությանը: Ինչը հենց պահանջվում էր կառուցել:''== Պնդում 15 ==
Եթե երկու հատվուղ ուղիղները զուգահեռ են ուրիշ հատվող ուղիղների, որոնք նույն հարթության մեջ չեն, ապա այդ հատվող ուղիղներով անցնող հարթությունները զուգահեռ են:
[[Պատկեր:Նկար-15.png|center|300px]]
AB և BC հատվող ուղիղները, զուգահեռ են երկու հատվող ուղիղների՝ DE և EF որոնք չեն գտնվում նույն հարթության մեջ։ Ցույց տանք, որ AB, BC և DE, EF ուղիղներով անցնող հարթությունները չեն հատվում:BG-ն, B կետից DE և EF ուղիղներով անցնող հարթությանը ուղղահայաց ուղիղ է [Պնդ. 11.11],վերջինիս հատում է հարթությունը G կետում : GH-ն G-ի կետով անցնող և ED ուղղին զուգահեռ ուղիղ է, GK ուղիղը զուգահեռ EF-ին [Պնդ. 1.31]:Եվ քանի որ BG-ն ուղղահայաց է DE և EF ուղիղներով անցնող հարթությանը, այդպիսով այն նաև ուղղահայաց կլինի բոլոր այն ուղիղներին որոնք պատկանում են այդ հարթությանը[Սահմ. 11.3]: Եվ GH և GK ուղիղներից յուրաքանչյուրը, որոնք գտնվում են DE և EF ուղիղներով անցնող հարթության մեջ, միացված են BG ուղղին: Այսպիսով, BGH և BGK անկյունները ուղիղ են: Եվ քանի որ BA-ն զուգահեռ է GH-ին [Պնդ. 11.9], GBA և BGH անկյունները ուղիղ են[Պնդ. 1.29]: Անկյուն BGH նույնպես ուղիղ է։Անկյուն GBA-ն ուղիղ է: GB-ն ուղղահայաց է BA-ին: Այսպիսով, նույն կերպ GB-ն ուղղահայաց է BC-ին։ Հետևաբար GB ուղիղը ուղղահայաց է՝ BA և BC ուղիղներին,այսպիսով GB-ն ուղղահայաց է BA և BC ուղիղներով անցնող հարթությանը [Պնդ. 11.4]:Իսկ հարթությունները, որոնց նույն ուղիղը ուղղահայաց է, զուգահեռ են [Պնդ 11.14]: Այսպիսով, AB և BC ուղիղներով անցնող հարթությունը զուգահեռ է DE և EF ուղիղներով անցնող հարթությանը:
== Պնդում 12 ==Հանգունորն, եթե միմյանց միացված երկու ուղիղները զուգահեռ են միմյանց միացված երկու ուղիղների, որոնք նույն հարթության մեջ չեն, ապա այդ ուղիղներով անցնող հարթությունները զուգահեռ են: Ինչ պահանջվում էր ցույց տալ:
== Պնդում 16 ==
Տվյալ կետիցԵթե ​​երկու զուգահեռ հարթություններ հատվում են ինչ-որ հարթությամբ, դիտարկվող հարթությանը տարված ուղղահայացի կառուցումը։ապա առաջացած ուղիղները զուգահեռ են։
[[Պատկեր:Նկար-16.png|center|300px]]
Երկու զուգահեռ հարթություններ AB և CD հատվում են EFGH հարթությամբ։ Իսկ EF և GH ուղիղները հատումից հառաջացած ուղիղներն են։ Ցույց տանք որ EF և GH ուղիղները զուգահեռ են։ Հակառակ դեպքում, EF-ն և GH-ը կհատվեն կա՛մ F, H, կա՛մ E, G-ի ուղղությամբ: Ենթադրենք հատվում են K կետում՝ F, H-ի ուղղությամբ: Եվ քանի որ EFK ուղիղը ընկած է AB հարթության մեջ, հետևաբար EFK ուղղի բոլոր կետերը ընկած են այդ հարթության մեջ [[ՊատկերՊնդ. 11.1]։ Իսկ K-ն EFK ուղղին պատկանող կետերից մեկն է։ Հետևաբար, K-ն AB հարթությանը պատկանող կետ է:ՆկարՆույն պատճառներով K-12ն նաև CD-ին պատկանող կետ է։ Այսպիսով, AB և CD հարթությունները հատվում են։ Բայց նրանք չեն հատվում, քանի որ ի սկզբանե ենթադրվում էր զուգահեռությունը: Այսպիսով, EF և GH ուղիղները, F, H ուղղությամբ, չեն հատվում:Հանգունորեն, մենք կարող ենք ցույց տալ, որ EF և GH ուղիղները, E, G ուղղությամբ, նույնպես չեն հատվում [Սահ.png]1.23]:Ստացվում է, որ EF-ը զուգահեռ է GH-ին:
Այսպիսով, եթե երկու զուգահեռ հարթություններ հատված են ինչ-որ հարթությամբ, ապա դրանց ընդհանուր հատվածները զուգահեռ են:Ինչ պահանջվում էր ցույց տալ։
Տրված հարթությունը դիտարկվող հարթությունն է, իսկ A-ն այդ հարթությանը պատկանող կետ: Այսպիսով, պահանջվում է A կետով անցնող և դիտարկվող հարթությանը ուղղահայաց ուղիղ կառուցել:Կամայական B կետից տանենք ուղղահայաց դիտարկվող հարթությանը, որը կհատի հարթությունը C կետում [Պնդ. 11.11]: BC-ին զուգահեռ և A կետով անցնող ուղիղ գծենք AD-ն [Պնդ. 1.31]:Քանի որ AD-ն և CB-ն երկու զուգահեռ ուղիղներ են, և դրանցից մեկը՝ BC-ն, ուղղահայաց է դիտարկվող հարթությանը հետևաբար, AD ուղիղը նույնպես ուղղահայաց է դիտարկվող հարթությանը [Պնդ. 11.8]: == Պնդում 17 ==
''Հետևաբար AD ուղիղը A կետով անցնող և հարթությանը ուղղահայաց ուղիղ է։ Ինչը պահանջվում էր կառուցել։''Եթե երկու ուղիղներ կտրվեն զուգահեռ հարթություններով, ապա առաջացած հատվածները կհարաբերվեն հավասարապես:
[[Պատկեր:Նկար-17.png|center|300px]]
Երկու ուղիղներ AB և CD հատվում են GH, KL և MN զուգահեռ հարթություններով A, E, B և C, F, D կետերում համապատասխանաբար: Ցույց տանք, որ ուղիղ AE հարաբերում է EB-ին, այնպես ինչպես CF-ն FD-ին:
AC, BD և AD ուղիղները միացնենք, AD ուղիղը հատում է KL հարթությանը O կետում, EO-ն և OF-ն միացնենք:Եվ քանի որ երկու զուգահեռ հարթություններ KL և MN հատված են EBDO հարթությամբ, նրանց ընդհանուր ուղիղները EO և BD զուգահեռ են [Պնդ. 11.16]: Այսպիսով, նույն կերպ, երկու զուգահեռ հարթություններ GH և KL հատված են AOFC հարթությամբ, նրանց ընդհանուր AC և OF հատվածները զուգահեռ են [Պնդ. 11.16]: Եվ քանի որ EO ուղիղը գծվել է ABD եռանկյան BD կողմին զուգահեռ, հետևաբար համաչափ են, AE հատվածի հարաբերությունը EB հատվածին, AO-ի հարաբերությունը OD-ն։
Քանի որ OF ուղիղը եռանկյունի ADC-ի AC կողմին զուգահեռ է, հետևաբար AO-ն հարաբերում է OD-ին, այնպես ինչպես CF-ը FD-ին [Պնդ. 6.2]: Հանգունորեն AO հարաբերում է OD այնպես, ինչպես AE-ն, EB-ին, ինչպես CF-ն, FD-ին:
== Պնդում 13 ==Այսպիսով, եթե երկու ուղիղներ հատվեն զուգահեռ հարթություններով, ապա առաջացած հատվածները կհարաբերեն նույն կերպ:Ինչ պահանջվում էր ցույց տալ:
== Պնդում 18 ==
Երկու տարբեր ուղիղներ չեն կարող անցնել մի կետով և միևնույն ժամանակ Եթե ուղիղն ուղղահայաց լինել նույն հարթության նույն կողմին։է ինչ-որ հարթությանը, ապա այդ ուղղով անցնող բոլոր հարթությունները նույնպես ուղղահայաց կլինեն դիտարկվող հարթությանը:
[[Պատկեր:Նկար-18.png|center|300px]]
[[ՊատկերԵնթադրենք AB ուղիղը ուղղահայաց է դիտարկվող հարթությանը:ՆկարՑույց տանք, որ բոլոր հարթությունները որոնք անցնում են AB-13ով նույնպես ուղղահայաց են դիտարկվող հարթությանը:DE հարթությունը անցնում է AB ուղղով: DE հարթությունը հատում է դիտարկվող հարթությանը: F կետը CE ուղղի կամայական կետ է: F-ից CE ուղղին տանենք ուղղահայաց որը վերջիններս կհատի G կետում, և կպատկանի DE հարթությանը [Պնդ.png]1.11]:
Եվ քանի որ AB-ն ուղղահայաց է դիտարկվող հարթությանը, որը նաև ուղղահայաց է նրան միացված բոլոր ուղիղներին, որոնք նույնպես գտնվում են դիտարկվող հարթության մեջ [Սահմ. 11.3]: Հետևաբար, այն նաև ուղղահայաց է CE ուղղին: ABF անկյունը ուղիղ է: Ինչպես նաև անկյուն GFB-ն նույնպես ուղիղ է: Այսպիսով, AB-ն զուգահեռ է FG-ին [Պնդ. 1.28]: Իսկ AB-ն ուղղահայաց է դիտարկվող հարթությանը: FG նույնպես ուղիղ անկյուն է կազմում դիտարկվող հարթության հետ [Պնդ. 11.8]:Վերջինիս հարթությունը ուղղահայաց է մյուս հարթությանը: Իսկ FG ուղիղը, ուղղահայաց է CE ընդհանուր ուղղին: DE հարթությունը ուղղահայաց է դիտարկվող հարթությանը: Հանգունորեն, կարելի է ցույց տալ, որ բոլոր հարթությունները որոնք անցնում են AB ուղղով ուղղահայաց են դիտարկվող հարթությանը:
Ենթադրենք հնարավոր է, ուրեմն երկու ուղիղներ AB և AC տեղադրենք միևնույն A կետում՝ դիտարկվող հարթությանը ուղղահայաց: Գծենք BA և AC ուղիղներով անցնող հարթություն: Այսպիսով, այն կհատի դիտարկվող հարթությունը A կետով անցնող DAE ուղղով[Պնդ. 11.3]: Այսպիսով, AB, AC և DAE ուղիղները ընկած են մեկ հարթության մեջ, և քանի որ CA-ն եթե ուղիղը ուղղահայաց է դիտարկվող ինչ-որ հարթությանը, այդպիսով այն նաև ապա նրանով անցնող բոլոր հարթությունները նույնպես ուղղահայաց է են դիտարկվող հարթության մեջ գտնվող բոլոր ուղիղներին[Պնդ. 11.3]: DAE-ն, որը գտնվում է դիտարկվող հարթության մեջ, միացված է դրան։Հետևաբար, CAE անկյունը ուղիղ է: Հանգունորեն BAE անկյունը նույնպես ուղիղ է։ Այսպիսով, CAE անկյունը հավասար է BAE անկյանը: Եվ նրանք մեկ հարթության մեջ են։ Ինչը անհնար է։ հարթության։Ինչը հենց անհրաժեշտ էր ցույց տալ։
''Այսպիսով, միևնույն կետով անցնող երկու (տարբեր) ուղիղներ չեն կարող, նույն հարթության, նույն կողմին ուղղահայաց լինել: Ինչը հենց պահանջվում էր ցույց տալ:''== Պնդում 19 ==
Եթե երկու հարթությունները հատում են երրորդ հարթությունը և ուղղահայաց են նրան ապա այդ հարթությունների հատումից առաջացած ուղիղը նույնպես ուղղահայաց է երրորդ հարթությանը։
[[Պատկեր:Նկար-19.png|center|300px]]
== Պնդում 14 ==Ենթադրենք AB և BC հարթությունները ուղղահայաց են դիտարկվող հարթությանը, և հատվում են BD ուղղով։ Ցույց տանք որ BD ուղիղը նույնպես ուղղահայաց է դիտարկվող հարթությանը։DE ուղիղը D կետով անցնող ուղիղ է որը ընկած է AB հարթության մեջ, և ուղղահայաց է AD ուղղին, նույն կերպ DF ուղիղը ընկած է BC հարթության մեջ և ուղղահայաց է CD ուղղին։Գիտենք որ AB հարթությունը ուղղահայաց է դիտարկվող հարթությանը, և ստացանք որ DE ուղղահայաց է AD հատման ուղղին, հետևաբար DE ուղիղը ուղղահայաց է դիտարկվող հարթությանը։ Նման կերպ կարող ենք ցույց տալ որ DF ուղիղը նույնպես ուղղահայաց է դիտարկվող հարթությանը։ Հետևաբար միևնույն D կետով անցնող երկու տարբեր ուղիղներ ուղղահայաց են նույն դիտարկվող հարթությանը, նույն կողմից։ Ինչը անհնար է [Սահմ. 11.13]։ Այսպիսով բացի AB և BC հարթությունների հատման ուղղից՝ DB-ից անհնար է D կետով անցնող և դիտարկվող հարթությանը ուղղահայաց ուղիղ գծել։
Հետևաբար, եթե երկու հարթություններ հատում են երրորդը ուղիղ անկյան տակ ապա նրանց հատման ուղիղը նույնպես ուղղահայաց կլինի դիտարկվող հարթությանը։Ինչը պահանջվում էր ցույց տալ։
Հարթությունները որոնք միևնույն ուղղին ուղղահայաց են ապա միմյանց զուգահեռ են։== Պնդում 20 ==
Եթե անկյունը կազմված է երեք հարթ անկյուններով ապա նրանցից ցանկացած երկուսի գումարը մեծ է երրորդից։
[[Պատկեր:Նկար-1420.png|center|300px]]
Ենթադրենք, A մարմնային անկյունը որոշվում է երեք հարթ անկյուններով՝ BAC, CAD և DAB: Ցույց տանք, որ BAC, CAD և DAB անկյուններից ցանկացած երկուսի գումարը ավելի մեծ է, քան երրորդ անկյունը:
ABՔանի որ եթե BAC, CAD և DAB անկյունները հավասար են միմյանց, ապա պարզ է, որ ցանկացած երկուսի գումարը մեծ է երրորդից:Հակառակ ենթադրությամբ, BACկամայական ուղիղ ավելի մեծ անկյուն է քան CAD կամ DAB: Եվ անկյուն BAE, որը ուղղահայաց հավասար է CD և EF հարթություններին։ Ցույց տանքDAB անկյանը, որ այդ հարթությունները զուգահեռ են։Հակառակ դեպքում հարթությունները կհատվեն։ Նրանք կհատվեն մի ընդհանուր ուղղով [Պնդ. 11.3]կառուցված է BAC-ով անցնող հարթությամբ, AB ուղղի վրա՝ A կետում:Ենթադրենք GHAEհարթությունների ընդհանուր ուղիղն է։ Կամայական K կետ վերցնենք GH ուղղի վրահավասար է AD հատվածին: Միացնենք AK E կետով անցնող BEC ուղիղը, հատում է AB և BK հատվածները։AC ուղիղները B և C կետերում համապատասխանաբար: Միացնենք DB ու DC ուղիղները։ABԵվ քանի որ DAուղղահայաց հավասար է EF հարթությանը և BK ուղղին։ՀետևաբարAE-ին, ABK անկյունը ուղիղ իսկ AB կողմը ընդհանուր է: Նույն պատճառներով BAK անկյունը նույնպես ուղիղ է։ Այսպիսով, ABK եռանկյան ABK հետևաբար AD և BAK երկու անկյունը ուղիղ AB հատվածները հավասար են EA և AB հատվածներին համապատասխանաբար: Ինչը անհնար DAB անկյունը հավասար է BAE անկյան: Այսպիսով, DB հիմքը հավասար է BE հիմքին [Պնդ. 1.174]:Հետևաբար. Քանի որ BD-ի և DC-ի հատվածների գումարը մեծ է BC-ից, որոնցից DB-ն հավասար է BE հատվածին, CD և EF հարթություններըDC-ն ավելի մեծ է քան EC հատվածը: Եվ քանի որ DA-ն հավասար է AE-ին, իսկ AC ընդհանուր է, չեն հատվում՝ CD և EF հարթությունները զուգահեռ են DC հիմքը մեծ է EC հիմքից, հետևաբար DAC անկյունն ավելի մեծ է, քան EAC անկյունը [ՍահմՊնդ. 111.825]: Իսկ DAB-ը հավասար է BAE-ին: Այսպիսով, DAB-ի և DAC-ի գումարը մեծ է BAC-ից: Հանգունորեն կարող ենք ցույց տալ որ մնացած անկյունները, զույգերով վերցված, ավելի մեծ են երրորդը:
Այսպիսով, եթե մարմնային անկյունը կազմված է երեք հարթ անկյուններով, ապա ցանկացած երկու անկյունների գումարը ավելի մեծ է, քան մյուսը, անկախ նրանց վերցնելու հաջորդականություից: Ինչ պահանջվում էր ցույց տալ:
''Այսպիսով, Հարթությունները որոնք միևնույն ուղղին ուղղահայաց են ապա այդ հարթությունները զուգահեռ են: Ինչ պահանջվում էր ցույց տալ:''== Պնդում 21 ==
Մարմնային անկյունը կառուցվում է հարթ անկյուններով որոնց գումարը փոքր է չորս ուղիղ անկյուններից։<ref>''Այս պնդումը ապացուցված է միայն երեք հարթ անկյուններով անցնող մարմնային անկյան համար: Այնուամենայնիվ, ընդհանուր դեպքում մարմնային անկյունը որը
պարունակում է ավելի քան երեք հարթ անկյուն պարզ է''</ref>
[[Պատկեր:Նկար.png|center|300px]]
== Պնդում 15 ==Ենթադրենք A անկյունը կառուցվում է BAC, CAD և DAB հարթ անկյուններով:Ցույց տանք, որ BAC, CAD և DAB անկյունների գումարը չորս ուղիղ անկյունների գումարից փոքր է:
Վերցնենք B, C և D կամայական կետերը AB, AC և AD ուղիղներից յուրաքանչյուրի վրա համապատասխան: Քանի որ B մարմնային անկյունը պարունակում է CBA, ABD և CBD երեք հարթ անկյունները, ապա ցանկացած երկուսի գումարը մեծ է երրորդից [Պնդ. 11.20]։ Այսպիսով, CBA և ABD անկյունների գումարը ավելի մեծ է, քան CBD-ն: Այսպիսով, նույն կերպ BCA-ի և ACD-ի գումարը մեծ է BCD-ից, իսկ CDA-ի և ADB-ի գումարը մեծ է, CDB-ից: Այսպիսով, CBA, ABD, BCA, ACD, CDA և ADB վեց անկյունների գումարը ավելի մեծ է, քան երեք անկյունների գումարը CBD, BCD և CDB: Բայց երեք անկյունների գումարը CBD, BDC և BCD հավասար է երկու ուղիղ անկյունների[Պնդ. 1.32]: Այսպիսով, CBA, ABD, BCA, ACD, CDA և ADB վեց անկյունների գումարը մեծ է երկու ուղիղ անկյուննեից: Եվ քանի որ ABC, ACD և ADB եռանկյուններից յուրաքանչյուրի երեք անկյունների գումարը հավասար է երկու ուղիղ անկյունների, ապա ինը անկյունների գումարը СВА, АСВ, ВAC, ACD, CDA, CAD, ADB, DBA և BAD երեք եռանկյուններից հավասար են վեց ուղիղ անկյունների գումարին, որոնցից վեց անկյունների գումարը ABC, BCA, ACD, CDA, ADB, DBA ավելի մեծ է, քան երկու ուղիղ անկյունները: Այսպիսով, մնացած երեք անկյունների գումարը BAC, CAD և DAB, որոնք վերջիններս կառուցում են մարմնային անկյունը, փոքր է չորս ուղիղ անկյուններից:
Եթե երկու հատվուղ ուղիղները զուգահեռ են ուրիշ հատվող ուղիղներիՀանգունորեն, որոնք նույն հարթության մեջ չեն, ապա այդ հատվող ուղիղներով անցնող հարթությունները զուգահեռ ենցանկացած մարմնային անկյուն կառուցվում է հարթ անկյուններով որոնց գումարը փոքր է չորս ուղիղ անկյունից։ Ինչ պահանջվում էր ցույց տալ:
== Պնդում 22 ==
[[Պատկեր:Նկար-15.png]]Եթե երեք հարթ անկյուններից ցանկացած երկուսի գումարը մեծ է երրորդից և հատվածները հավասար են միմյանց ապա ամենայն հավանականությամբ այդ հատվածներով կարելի է կառուցել եռանկյուն։
[[Պատկեր:Նկար-21.png|center|400px]]
AB Ենթադրենք ABC, DEF, և GHK հարթ անկյուններ են որոնց ցանկացած երկուսի գումարը ավելի մեծ է քան երրորդը։ AB, BC հատվող ուղիղները, զուգահեռ են երկու հատվող ուղիղների՝ DE , EF, GH, և EF որոնք չեն գտնվում նույն հարթության մեջ։ Ցույց HK հավասար հատվածներ են։Միացնենք AC,DF և GK հատվածները։ Այժմ ցույց տանքոր հնարավոր է կառուցել եռանկյուն որի կողմերը հավասար են AC, DF և GK հատվածներին, ասել է թե ցանկացած երկուսի գումարը մեծ է երրորդից։ ABC, DEF և GHK անկյունները հավասար են՝ ստացվում է, որ AC, DF, GK հատվածները հավասարվում են և հնարավոր է լինում կառուցել եռանկյուն այդ հատվածներով։ Հակառակ դեպքում եթե նրանք հավասար չեն և KHL անկյունը հավասար է ABC անկյանը։ Ենթադրենք որ HL հատվածը հավասար է AB, BC և , DE, EF ուղիղներով անցնող հարթությունները չեն հատվում:BG-ն, GH, B կետից DE և EF ուղիղներով անցնող հարթությանը ուղղահայաց ուղիղ է [Պնդ. 11.11],վերջինիս հատում է հարթությունը G կետում : GHHK հատվածներից մեկին։ Միացնենք KLGGL-ի կետով անցնող ին։ Քանի որ AB և ED ուղղին զուգահեռ ուղիղ BC հատվածները հավասար են համապատասխանաբար KH և HL հատվածներին և անկյուն B հավասար է, GK ուղիղը զուգահեռ EFKHL-ին [Պնդ. 1.31]:Եվ քանի որ BGև ACուղղահայաց հավասար է DE KL հիմքին։ ABC և EF ուղիղներով անցնող հարթությանըGHK անկյունների գումարը մեծ է DEF-ից, այդպիսով այն նաև ուղղահայաց կլինի բոլոր այն ուղիղներին և ABC հավասար է KHL, GHL անկյուններին որոնք պատկանում իրենց հերթին մեծ են այդ հարթությանը[Սահմ. 11.3]: DEF անկյունից։ Եվ քանի որ GH և GK ուղիղներից յուրաքանչյուրը, որոնք գտնվում HL կողմերը հավասար են համապատասխանաբար DE և EF ուղիղներով անցնող հարթության մեջհատվածներին, միացված են BG ուղղին: Այսպիսով, BGH և BGK անկյունները ուղիղ են: Եվ քանի որ BAGHL անկյունը մեծ է DEF-ն զուգահեռ ից ստացվում է GH-ին որ GL հիմքը մեծ է DF հիմքից[Պնդ. 111.924], GBA ։ GK և BGH անկյունները ուղիղ ենKL հատվածների գումարը մեծ է GL-ից [Պնդ. 1.2920]: Անկյուն BGH նույնպես ուղիղ է։Անկյուն GBA-ն ուղիղ ։Հետևաբար GK և KL հատվածների գումարը մեծ է: GBDF-ն ուղղահայաց է BA-ին: Այսպիսովից, նույն կերպ GB-ն ուղղահայաց KL հավասար է BCAC-ին։ Հետևաբար GB ուղիղը ուղղահայաց է՝ BA Այդ իսկ պատճառով AC և BC ուղիղներին,այսպիսով GBGK հատվածների գումարը մեծ է DF-ն ուղղահայաց է BA և BC ուղիղներով անցնող հարթությանը [Պնդ. 11.4]:Իսկ հարթությունները, որոնց նույն ուղիղը ուղղահայաց է, զուգահեռ են [Պնդ 11.14]: Այսպիսով, AB և BC ուղիղներով անցնող հարթությունը զուգահեռ է DE և EF ուղիղներով անցնող հարթությանը:ից։
Հանգունորեն՝ կարող ենք ասել որ AC և DF գումարը մեծ է GK-ից, ավելին DF-ի և GK-ի գումարը մեծ է AC-ից։ Այսպիսով կարելի է կառուցել եռանկյուն AC, DF, GK հատվածներով։Ինչը պահանջվում էր ցույց տալ։
''Հանգունորն, եթե միմյանց միացված երկու ուղիղները զուգահեռ են միմյանց միացված երկու ուղիղների, որոնք նույն հարթության մեջ չեն, ապա այդ ուղիղներով անցնող հարթությունները զուգահեռ են: Ինչ պահանջվում էր ցույց տալ:''== Պնդում 23 ==
Մարմնային անկյուն կառուցելու համար պետք է երեք հարթ անկյուններ, որոնցից երկուսի գումարը մեծ է երրորդից։ Այսպիսով, անհրաժեշտ է, որ այդ անկյունների գումարը փոքր լինիչորս ուղիղ անկյունների գումարից։
== Պնդում 16 ==[[Պատկեր:Նկար-23.png|center|400px]]
Տրված են ABC, DEF և GHK երեք հարթ անկյուններ, որոնցից երկուսի գումարը մեծ է երրորդից, իսկ երեքի գումարը չորս ուղիղ անկյուններից փոքր է։ Այսպիսով, անհրաժեշտ է կառուցել մարմնային անկյուն՝ հարթ անկյուններից։
AB, BC, DE, EF, GH և HK հատվում են այնպես, որ դրանք հավասար լինեն միմյանց։ AC-ը, DF-ն և GK-ն միացնենք։ Հնարավոր է կառուցել եռանկյունի հետևյալ հատվածներից՝ AC, DF և GK [Պնդ. 11.22]:
Եթե ​​երկու զուգահեռ հարթություններ հատվում են ինչ-LMN եռանկյունը կառուցենք այնպես, որ հարթությամբAC-ը հավասար է LM-ին, DF-ն՝ MN-ին, և GK-ն՝ NL-ին։ LMN կետերով շրջան գծենք LMN եռանկյան շուրջը Օ կենտրոնով։ Միացնենք LO, ապա առաջացած ուղիղները զուգահեռ են։MO և NO շառավիղները։
[[Պատկեր:Նկար-23-2.png|center|300px]]
Ցույց տանք, որ AB-ն ավելի մեծ է, քան LO-ն,հակառակ ենթադրությամբ AB-ն կամ հավասար է LO-ին, կամ փոքր է նրանից։ Ենթադրենք հավասար է։Քանի որ AB-ն հավասար է LO-ին, AB-ն նաև հավասար է BC-ին, իսկ OL-ը՝ OM-ին, ուստի AB և BC համապատասխանաբար հավասար են LO-ին և OM-ին։ Իսկ AC հիմքը ենթադրվում էր հավասար LM հիմքին։ Այդ իսկ պատճառով ABC անկյունը հավասար է LOM անկյանը [[ՊատկերՊնդ. 1.8]:ՆկարՆույն կերպ DEF-16ը նույնպես հավասար է MON-ին, իսկ GHK-ն՝ NOL-ին։ Կարելի է պնդել որ երեք անկյունները ABC, DEF և GHK հավասար են LOM, MON և NOL երեք անկյուններին համապատասխանաբար։ Բայց LOM, MON և NOL երեք անկյունների գումարը հավասար է չորս ուղիղ անկյունների գումարին։ Այսպիսով, երեք անկյունների ABC, DEF և GHK գումարը նույնպես հավասար է չորս ուղիղ անկյունների գումարին։ Սակայն նաև ենթադրվում էր, որ դրանք փոքր են չորս ուղիղ անկյունների գումարից։ Որը անհնար է։ Այսպիսով, AB-ն չի կարող հավասար լինել LO-ին։ Ցույց տանք որ AB-ն LO-ից քիչ չէ։ Հակառակ ենթադրությամբ վերցնենք որ փոքր է։Ենթադրենք OP-ն հավասար է AB-ին, իսկ OQ-ն հավասար BC-ին։ Քանի որ AB-ն հավասար է BC-ին, OP-ն նույնպես հավասար է OQ-ին։ Հետևաբար LP-ն նույնպես հավասար է QM-ին։ Այսպիսով, LM-ը զուգահեռ է PQ-ին [Պնդ.png]6.2], և եռանկյունը LMO հավասար է PQO եռանկյանը։Այսպիսով, ինչպես OL-ն LM-ին էհարաբերում, այնպես էլ OP-ը PQ-ին։ Այլապես, ինչպես LO-ն OP-ին է, այնպես էլ LM-ն PQ-ին: Իսկ LO-ն ավելի մեծ է, քան OP։ Այսպիսով, LM-ը նույնպես ավելի մեծ է, քան PQ-ն: Բայց LM-ն հավասար է AC-ին։ Այսպիսով, AC-ը նույնպես ավելի մեծ է, քան PQ-ն։Հետևաբար, քանի որ AB և BC հատվածները հավասար են PO և OQ-ին , և AC հիմքը մեծ է PQհիմքից, ABC անկյունը ավելի մեծ է, քան անկյունը PQO:Մենք կարող ենք ցույց տալ, որ DEF-ը նույնպես մեծ է MON-ից, իսկ GHK-ն՝ NOL-ից։ Այսպիսով, երեք անկյունների ABC-ի, DEF-ի և GHK-ի գումարը հավասար է NOL-ին։ Բայց ABC-ի, DEF-ի և GHK-ի գումարը ենթադրվում էր փոքր չորս ուղիղ անյունների գումարից։ Բայց LOM-ի, MON-ի և NOL-ի գումարը շատ ավելի փոքր է այդ գումարից։ Բայց նույնպես պետք է հավասար լինի չորս ուղիղ անկյունների գումարին։ Ինչը անհնար է։ Այսպիսով, AB-ն LO-ից պակաս չէ։Երկու սխալ ենթադրություններից հետո կարելի է ասել AB-ը մեծ է LO-ից։
Այսպիսով, O կետում LMN շրջանագծի հարթության նկատմամբ ուղղահայաց գծենք OR: OR-ի քառակուսին հավասար է AB-ի քառակուսի գումարած LO քառակուսի։․Եվ քանի որ RO-ն ուղահայաց է LMN շրջանագծի հարթությանը, RO-ն նույնպես ուղղահայաց է LO, MO և NO-ից յուրաքանչյուրին։ Եվ քանի որ LO-ն հավասար է OM-ին, իսկ OR-ը ուղիղ է, ուստի RL հիմքը հավասար է RM-ի հիմքին [Պնդ. 1.4]. Նույն պատճառներով RN-ը նույնպես հավասար է RL-ից և RM-ից յուրաքանչյուրին։
Այսպիսով, երեք (ուղիղ) RL, RM և RN հավասար են միմյանց: Եվ քանի որ OR-ի քառակուսին ենթադրվում էր, որ հավասար AB-ի քառակուսի հանած LO-ի քառակուսին, հետևաբար AB-ի քառակուսին հավասար է նրանց քառակուսիների գումարին: LR-ի քառակուսին հավասար է LO-ի և OR-ի քառակուսիների գումարին: Այսպիսով, AB-ի վրա քառակուսին հավասար է RL-ի քառակուսուն: Այսպիսով, AB հավասար է RL-ին:
Բայց BC, DE, EF, GH և HK-ից յուրաքանչյուրը հավասար է AB-ին, իսկ RM-ն և RN-ն հավասար է RL-ին։ Այսպիսով, AB, BC, DE, EF, GH և HK-ից յուրաքանչյուրն հավասար է RL, RM և RN-ին։
Եվ քանի որ LR և RM երկու գծերը հավասար են AB և BC-ին համապատասխանաբար, և LM հիմքը հավասար է AC հիմքին, ապա LRM անկյունը հավասար է ABC անկյանը։
Երկու զուգահեռ հարթություններ AB և CD հատվում են EFGH հարթությամբ։ Իսկ EF և GH ուղիղները հատումից հառաջացած ուղիղներն են։ Ցույց տանք որ EF և GH ուղիղները զուգահեռ են։ Հակառակ դեպքումԱյսպիսով, EF-ն և GH-ը կհատվեն կա՛մ F, H, կա՛մ E, G-ի ուղղությամբ: Ենթադրենք հատվում են K կետում՝ FR մարմնային անկյունը, H-ի ուղղությամբ: Եվ քանի որ EFK ուղիղը ընկած որը պարունակում է AB հարթության մեջLRM, հետևաբար EFK ուղղի բոլոր կետերը ընկած են այդ հարթության մեջ [Պնդ. 11.1]։ Իսկ K-ն EFK ուղղին պատկանող կետերից մեկն է։ ՀետևաբարMRN և LRN անկյունները, K-ն AB հարթությանը պատկանող կետ կառուցվել է: Նույն պատճառներով K-ն նաև CD-ին պատկանող կետ է։ ԱյսպիսովLRM, AB MRN և CD հարթությունները հատվում են։ Բայց նրանք չեն հատվումLRN երեք հարթ անկյուններից, քանի որ ի սկզբանե ենթադրվում էր զուգահեռությունը: Այսպիսովորոնք հավասար են երեք հարթ անկյուններին՝ ABC, EF DEF և GH ուղիղները, F, H ուղղությամբ, չեն հատվում:Հանգունորեն, մենք կարող ենք ցույց տալ, որ EF և GH ուղիղները, E, G ուղղությամբ, նույնպես չեն հատվում [Սահ. 1.23]:Ստացվում է, որ EF-ը զուգահեռ է GH-ին:GHK ։ Ինչը պահանջվում էր ապացուցվի։
=== Լեմմա ===
''Այսպիսով, եթե երկու զուգահեռ հարթություններ հատված են ինչ-որ հարթությամբ, ապա դրանց ընդհանուր հատվածները զուգահեռ են[[Պատկեր:Ինչ պահանջվում էր ցույց տալ։''Լեմմա.png|center|300px]]
Եվ այսպես, մենք կարող ենք ցույց տալ, թե ինչպես վերցնենք OR-ը այնպես, որ դրա քառակուսին հավասար լինի այն մակերեսին, որով AB-ի քառակուսին ավելի մեծ է LO-ի քառակուսուց։
AB և LO ուղիղները գծենք այնպես, որ AB-ն ավելի մեծ լինի քան LO։ ABC կիսաշրջանը ընկած լինի AB տրամագծի վրա, և AC-ը ՝որը հավասար է LO-ին և մեծ չէ AB-ից, գծենք այդ կիսաշրջանի մեջ: Միացնենք նաև C և B կետերը։
Քանի որ ACB անկյունը գտնվում է ABC կիսաշրջանի մեջ և ընկած է տրամագծի վրա, ապա ACB անկյունը ուղիղ է:Հետևաբար, AB-ի քառակուսին հավասար է AC-ի և CB-ի քառակուսիների գումարի գումարին [Պնդ. 1.47]:
Այսպիսով, AB-ի քառակուսին AC-ի քառակուսուց մեծ է CB-ի քառակուսու չափով։ Եվ քանի որ AC-ը հավասար է LO-ին, ապա AB-ի քառակուսին ավելի մեծ է LO-ի քառակուսուց CB-ի քառակուսու չափով։
Հիմա եթե OR-ը վերցնենք այնպես, որ այն հավասար լինի CB-ին, ապա AB-ի քառակուսին կլինի հավասար LO-ի և OR-ի քառակուսիների գումարին։
Այսինքն, AB-ի քառակուսուց հանած LO-ի քառակուսի հավասար է OR-ի քառակուսուն։ Ինչը անհրաժեշտ էր ցույց տալ։
== Պնդում 24 ==
== Պնդում 17 ==Եթե բազմանիստը բախկացած է 6 զուգահեռ հարթություններից որոնք և հատումներից առաջացնում են հակադիր հավասար զուգհեռագծեր։
Եթե երկու ուղիղներ կտրվեն զուգահեռ հարթություններով, ապա առաջացած հատվածները կհարաբերվեն հավասարապես[[Պատկեր:Նկար-24.png|center|300px]]
CDHG բազմանիստը կազմված է երկու զուգահեռ հարթություններով AC, GF և AH, DF և BF,AE։ Ցույց տանք որ հակադիր հարթությունները հավասար զուգահեռագծեր են։
Երկու զուգահեռ հարթությունները BG-ն և CE-ն հատվում են երրորդ՝ AC հարթությամբ, առաջացած հատվածները զուգահեռ են /AB-ն և DC-ն/։ Նույն կերպ BF և AE զուգահեռ հարթությունները հատվում են AC հարթությամբ, և առաջացած հատվածները զուգահեռ են: Այսպիսով, մենք կարող ենք նաև ցույց տալ, որ DF, FG, GB, BF և AE ստեղծում են զուգահեռագծեր:
[[ՊատկերA միացնենք H-ն և D միացնենք F-ն:ՆկարԵվ քանի որ AB-17.png]]ը զուգահեռ է DC-ին, իսկ BH-ն՝ CF-ին, ուստի երկու հատվածները՝ AB և BH, զուգահեռ են միմյանց միացող այլ հարթության մեջ ընկած երկու ուղիղ գծերին՝ DC-ին և CF-ին։ Հետևաբար նրանք կպարունակեն հավասար անկյուններ: ABH անկյունը հավասար է DCF անկյանը: Եվ քանի որ երկու հատվածներ ՝ AB և BH հավասար են երկու հատվածների DC-ին և CFին, իսկ ABH անկյունը հավասար է DCF անկյան, հետևաբար,AH հիմքը հավասար է հիմքի DF-ին, իսկ ABH եռանկյունը հավասար է DCF եռանկյանը: Այսպիսով, BG զուգահեռագիծը հավասար է CE զուգահեռագծին: Մենք կարող ենք ցույց տալ, որ AC-ը նույնպես հավասար է GF-ին, իսկ AE-ն՝ BF-ին:
Այսպիսով, եթե բազմանիստը պարունակվում է վեց զուգահեռ հարթություններ, ապա նրա հակառակ հարթությունները և՛ հավասար են, և՛ զուգահեռագծեր են: Ինչ պահանջվում էր ցույց տալ:
Երկու ուղիղներ AB և CD == Պնդում 25 == Եթե զուգահեռանիստը հատվում է զուգահեռ հարթություններով որոնք հակադիր են բազմանիստի հիմքին ապա առաջացած մարմինները կլինեն կրկին GH, զուգահեռանիստեր։ [[Պատկեր:Նկար-25.png|center|300px]] ABCD զուգահեռագիծը հատենք FG հարթությամբ որը զուգահեռ է RA և DH հարթություններին։ Ցույց տանք որ AEFV հիմքը հարաբերում է EHCF հիմքին այնպես ինչպես ABFU զուգահեռագծի ծավալը EGCD զուգահեռագծի ծավալին։AK և KL գծենք հավասար AE հատվածին, նման կերպ HM և MN զուգահեռ հարթություններով Aգծենք հավասար EH-ին։ Եվ քանի որ LK, EKA և AE հատվածները հավասար են, B LP, KV և CAF զուգահեռագծերը նույնպես հավասար են։ KO, FKB և AG հավասար են, D կետերում համապատասխանաբարնաև LX, KQ և AR հավասար են: Ցույց տանքԱյսպիսով, որ ուղիղ AE նույն կերպ EC, HW և MS զուգահեռագծերը նույնպես հավասար են, իսկ HG, HI և IN հավասար են, ինչպես նաև DH, MY և NT հատվածներն են հավասար: Այսպիսով, զուգահեռանիսների երեք հարթությունները LQ, KR և AU հավասար են մյուս զուգահեռանիսի երեք հարթություններին: Բացի այդ վերոնշյալ երեք հարթությունները հավասար են երեք հակադիր հարթություններին: Այսպիսով, զուգահեռանիսները LQ, KR և AU հավասար են միմյանց: Նույն կերպ երեք զուգահեռանիստերը ED, DM և MT նույնպես հավասար են: Այսպիսով LF հիմքը հարաբերում է EBAF հիմքին այնպես ինչպես LU զուգահեռանիստը AU-ինի: Հանգունորեն որքան NF հիմքը հարաբերում է FHին , այնպես ինչպես CF NU զուգահեռանիստը HU-ին։<ref>''Այստեղ Էվկլիդեսը համարում է, որ LF >=< NF հանգունորեն LU >=< NU: Սա հեշտությամբ կարելի է ցույց տալ''</ref> Եթե հիմք LFFDհավասար է NF հիմքին, ապա LU զուգահեռանիստը նույնպես հավասար է NU զուգահեռանիստին: Սակայն եթե LF փոքր է NF-ինից, ապա LU-ն փոքր է NU-ից: Այսպիսով, կան չորս մեծություններ՝ երկու հիմքերը՝ AF և FH, և երկու զուգահեռանիստ՝ AU և UH, որոնք վերջինս հարաբերում են նույն կերպ:Ցույց տվեցինք, որ եթե LF հիմքը մեծ է FN հիմքից, ապա LU զուգահեռանիստը նույնպես մեծ է NU-ից,նույն կերպ հավասարման դեպքում նրանք հավասարվում են:ACԱյսպիսով, BD AF հիմքը հարաբերում է FH հիմքին այնպես ինչպես AU զուգահեռանիստը UH-ին։Ինչը պահանջվում էր ցույց տալ: == Պնդում 26 == Մարմնային անկյան կառուցունը որը հավասար է տրված մարմնային անկյանը և AD ուղիղները միացնենքանցնում է տրված ուղղի տրված կետով։Ենթադրենք AB-ն տրված ուղիղն է, AD ուղիղը հատում իսկ A-ն տրված կետը, և D-ն տրված մարմնային անկյունը որը վերջիններս պատկանում է KL EDC, EDF, FDC հարթ անկյուններին։Այսպիսով անհրաժեշտ է կառուցել մարմնային անկյունը որը կանցնի AB ուղղի A կետով և հավասար կլինի տրված D մարմնային անկյանը։ [[Պատկեր:Նկար-26.png|center|300px]] Կամայական F կետ վերցնենք DF ուղղի վրա, իսկ FG ուղիղը գծենք F կետից ուղղահայաց ED և DC ուղիղներով անցնող հարթությանը O , վերջինիս կհատի հարթությունը G կետում: BAL անկյունը, EOորը հավասար է EDC անկյան, և BAK անկյունը, հավասար է EDG-ին, կառուցված են AB ուղղի A կետով: AK հավասար է DG-ին: KHանցնում է K կետով և OFուղղահայաց է B, A, L կետերով անցնող հարթությանը: KHմիացնենք:Եվ քանի հավասար GF-ին։Ցույց տանք, որ երկու զուգահեռ հարթություններ KL A կետով անցնող մարմնային անկյունը, որը պարունակում է BAL, BAH և MN հատված են EBDO հարթությամբHAL հարթ անկյունները, նրանց ընդհանուր ուղիղները EO հավասար է D-իմարմնային անկյանը, որը վերջինիս պարունակում է EDC, EDF և BD զուգահեռ FDC հարթ անկյունները: AB-ն և DE-ն հատվում են [Պնդ. 11.16]այնպես որ առաջացած հատվածները լինեն հավասար: Քանի որ FG-ն ուղղահայաց է դիտարկվող հարթությանը, այն նաև ուղղահայաց կլինի դիտարկվող հարթությանը պատկանող բոլոր ուղիղներին: Այսպիսով, նույն FGD և FGE անկյունները ուղիղ անկյուններ են: Նույն կերպ, HKA և HKB անկյունները նույնպես ուղիղ են: Եվ քանի որ երկու զուգահեռ հարթություններ GH հատվածներ՝ KA և KL հատված AB հավասար են AOFC հարթությամբերկու հատվածների GD-ին և DET-ին, նրանց ընդհանուր AC և OF հատվածները զուգահեռ նրանք պարունակում են [Պնդ. 11.16]հավասար անկյուններ, ուստի KB հիմքը հավասար է GE հիմքին։ KH-ն հավասար է GF-ին։ Իսկ դրանք պարունակում են ուղիղ անկյուններ: Այսպիսով, HB նույնպես հավասար է FE-ին։ Եվ քանի որ երկու հատվածներ AK և KH հավասար են DG և GF EO ուղիղը գծվել է ABD եռանկյան BD կողմին զուգահեռհատվածներին համապատասխանաբար, և դրանք պարունակում են ուղիղ անկյուններ, հետևաբար համաչափ AH հիմքը հավասար է FD հիմքին։ AB հատվածը հավասար է DE-ին: Երկու HA և AB հատվածները հավասար ենDF-ին և DE-ին համապատասխանաբար: Իսկ HB հիմքը հավասար է FE հիմքին։ Այսպիսով, AE հատվածի հարաբերությունը EB հատվածինBAH անկյունը հավասար է EDF անկյանը: Նույն կերպ HAL անկյունը հավասար է FDC-ին, AOիսկ BAL-ի հարաբերությունը ODը հավասար է EDC-ն։ին:Քանի որ OF Այսպիսով, կառուցեցինք այն մարմնային անկյունը որը հավասար է տրված D մարմնային անկյանը, և անցնում է AB ուղղի A կետով։ Ինչը պահանջվում էր ցույց տալ։ == Պնդում 27 == Կառուցել տրված գծից տրված զուգահեռանիստին համաչափ զուգահեռահեռանիստ։Ենթադրենք տրված ուղիղը եռանկյունի ADCAB-ի ն է, իսկ տրված զուգահեռանիստը CD-ն: Այսպիսով, անհրաժեշտ է AC կողմին զուգահեռ կառուցել տրված ուղղի՝ AB-ի վրա տրված զուգահեռանիստի՝ CD-ին նման զուգահեռանիստ: [[Պատկեր:Նկար-27.png|center|300px]] AB ուղիղ գծի վրա՝ A կետում BAH, HAK և KAB հարթ անկյուններով կազմված մարմնային անկյունը հավասար էC մարմնային անկյանը, հետևաբար AOBAH անկյունը հավասար է ECF-ին, և BAK-ը` ECG-ին և KAH-ը՝ GCF-ին: EC-ն հարաբերում է ODCG-ին, այնպես ինչպես BA-ն՝ AK-ին, և ինչպես GC-ն՝ CF-ը FDին, ինչպես KA-ն՝ AH-ին [Պնդ. 6.2]: Հանգունորեն AO Լրացնենք HB զուգահեռանիստը։Եվ քանի EC-ն հարաբերում է OD այնպեսCG-ին, այնպես ինչպես AEBA-ն՝ AK-ին, և ECG և BAK հավասար անկյունների դիմացի կողմերը հարաբերում են նույն կերպ, ուստի GE զուգահեռագիծը նման է KB զուգահեռագծին: Հանգունորեն KH զուգահեռագիծը նման է GF զուգահեռագծին, FEէլ՝ HB-ին: Այսպիսով, EBCD զուգահեռանիստի երեք զուգահեռագծերը նման են AL զուգահեռանիստի երեք զուգահեռագծերին: Նաև առաջին զուգահեռանիստի երեքը հակադիր զուգահեռագծերը նման են, մյուս երեքը հակադիր զուգահեռագծերին։ Այսպիսով, CD զուգահեռանիստը նման է AL զուգահեռանիստին։  Այսպիսով, AL զուգահեռանիստը, որը նման է տրված զուգահեռանիստի CD-ին, ինչպես նկարագրված է տրված AB ուղղի A կետով: Ինչ հենց պահանջվում էր անել: == Պնդում 28 == Եթե զուգահեռանիստը անկյունագծային հարթությամբ հատենք, ապա զուգահեռանիստը կկիսվի։ AB զուգահեռանիստը հատենք CDEF հարթությամբ, որը անցնում է CFև DE անկյունագծերով։<ref>''Ենթադրվում է, որ երկու անկյունագծերը ընկած են նույն հարթության մեջ: Հեշտ կարելի է ցույց տալ:''</ref>Ցույց տանք, CDEF հարթությունը կկիսի AB զուգահեռանիստը: [[Պատկեր:Նկար-28.png|center|300px]] Քանի որ CGF եռանկյունը հավասար է CFB եռանկյունին, ADE հավասար է DEH-ին, իսկ CA զուգահեռագիծը հավասար է EB-ին, քանի որ նիստերը հակադիր են, հանգունորեն GE նիստը հավասար է CH-ին, հետևաբար, պրիզման, որը պարունակում է երկու եռանկյուններ CGF և ADE, և երեք զուգահեռագծեր GE, AC և CE, հավասար է CFB և DEH երկու եռանկյուններ պարունակվող պրիզմային, և երեք զուգահեռագծերի՝ CH, BE և CE:Այդ եռանկյունները ընկած են հարթությունների մեջ որոնք հավասար։<ref>''Սակայն, կոպիտ ասած, պրիզմաները դասավորված չեն նման կերպ, լինելով միմյանց հայելային պատկերներ:''</ref>  Այսպիսով, ամբողջ զուգահեռանիստը կիսվում է CDEF հարթությամբ: Ինչ պահանջվում էր ցույց տալ: == Պնդում 29 == Զուգահեռանիստերը որոնք ընկած են նույն հիմքի վրա և ունեն հավասար բարձրություններ, ապա նրանք հավասար են միմյանց։ [[Պատկեր:Նկար-29.png|center|300px]] Ենթադրենք CM և CN զուգահեռագծերը ընկած են նույն AB հիմքի վրա և ունեն նույն բարձրությունը, AG, AF, LM, LN, CD, CE, BH, և BKընկած են նույն ՝ FN և DK ուղիղների վրա։Ցույց տանք որ CM և CN զուգահեռանիստերը հավասար են։Քանի որ CH-ն և CK-ը զուգահեռագծեր են, FDու CB-ն հավասար է և՛ DH-ինև՛ EK-ին: DH-ն հավասար է EK-ին: Այսպիսով, DE հավասար է HK-ին: DCE եռանկյունը նույնպես հավասար է HBK եռանկյանը, և DG զուգահեռագիծը հավասար է HN զուգահեռագծին: Հանգունորեն AFG եռանկյունը, հավասար է MLN եռանկյանը: Եվ CF զուգահեռագիծը հավասար է BM զուգահեռագծին, իսկ իր հերթին CG-ն՝ BN-ին: Որպես հակադիր նիստեր: Այսպիսով, AFG և DCE երկու եռանկյունների և երեք AD, DG և CG զուգահեռագծերով անցնող պրիզման հավասար է MLN և HBK երկու եռանկյունների և երեք BM, HN և BN զուգահեռագծերով՝ պրիզմային:Հակադիր նիստերը նույնպես հավասար են։ Հետևաբար ամբողջ զուգահեռանիստ CM-ն հավասար է ամբողջ զուգահեռանիստին՝ CN-ին: Այսպիսով, զուգահեռանիստեր, որոնք գտնվում են միևնույն հիմքի վրա և ունեն նույն բարձրությունը հավասար են միմյանց։Ինչ պահանջվում էր ցույց տալ:
== ՆՇՈՒՄՆԵՐ ==
''Այսպիսով, եթե երկու ուղիղներ հատվեն զուգահեռ հարթություններով, ապա առաջացած հատվածները կհարաբերեն նույն կերպ:Ինչ պահանջվում էր ցույց տալ:''<references />
Բյուրոկրատ, Ադմին, Վստահելի
87
edits