Changes

Տարերք/Գիրք 2

Ավելացվել է 13 բայտ, 10 Դեկտեմբեր
/* Պնդում 2 Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ a b + a c = a^2 եթե a = b + c */
Այսպիսով, եթե կան երկու ուղիղներ, և դրանցից մեկը բաժանված է կամայական թվով մասերի, ապա այս երկու ուղիղ գծերով կազմված ուղղանկյունը հավասար է չկտրված գծի և մասերից յուրաքանչյուրի կազմած ուղղանկյունների գումարին։ Ահա այն ինչ պահանջվում էր ապացուցել։
== Պնդում 2 <ref>Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ <math>a b + a c = a^2 </math> եթե <math>a = b + c</math></ref>==
Եթե ​​ուղիղը կամայականորեն բաժանված է մասերի, ապա ամբողջ ուղղով և նրա յուրաքանչյուր մասով կազմված ուղղանկյունների գումարը հավասար է ամբողջ ուղղով կազմված քառակուսուն: