Changes
'''
== Առաջարկ Պնդում 4 =='''
Ամեն տեսակ տրված հարաբերությունների համար, որոնք արտահայտված են նվազագույն թվերով, անհրաժեշտ է գտնել նվազագույն թվեր, որոնք շարունակաբար համեմատական են այդ տրված հարաբերություններում։
Թող տրված հարաբերությունները, արտահայտված նվազագույն թվերով, լինեն A-ի և B-ի, C-ի և D-ի, և, վերջապես, E-ի և F-ի հարաբերությունները։ Անհրաժեշտ է գտնել նվազագույն թվերը, որոնք շարունակաբար համեմատական են A-ի և B-ի, C-ի և D-ի, և E-ի և F-ի հարաբերություններում։
Հետևաբար, եթե G բաժանում է O-ն, ինչքան մեծ է բաժանումը, այնքան կքչանա։ Բանն ինքնին անհնար է։ Հետևաբար, չեն կարող լինել թվեր, որոնք փոքր են H, G, K, L-ից և որոնք, շարունակական են և համաչափ to A-ն B-ի, և C-ն D-ի և հետագայում Е և F-ի հանդեպ։
Այժմ թող E-ն չչափի K-ն: Եվ թող նվազագույն թիվը, M-ը, որը չափվում է (և) E-ով և K-ով, ընտրված լինի [Հիմք 7.34]: Եվ քանի անգամ K-ն չափում է M-ը, նույնքան անգամ թող H-ն, G-ն նույնպես չափեն N-ն և O-ն համապատասխանաբար: Եվ քանի անգամ E-ն չափում է M-ը, նույնքան անգամ թող F-ն նույնպես չափի P-ն: Քանի որ H-ն չափում է N-ը նույնքան անգամ, որքան G-ն (չափում է) O-ն, ուրեմն, ինչպես H-ն G-ին է, այնպես էլ N-ը՝ O-ին [Սահմանում 7.20, Հիմք 7.13]: Եվ ինչպես H-ն (կապակցվում է) G-ի հետ, այնպես էլ A-ն (կապակցվում է) B-ին: Ուստի, ինչպես A-ն (կապակցվում է) B-ին, այնպես էլ N-ը՝ O-ին: Եվ այսպիսով, նույն պատճառներով, ինչպես C-ն (կապակցվում է) D-ին, այնպես էլ O-ն (կապակցվում է) M-ին: Դարձյալ, քանի որ E-ն չափում է M-ը նույնքան անգամ, որքան F-ն (չափում է) P-ն, ուրեմն, ինչպես E-ն (կապակցվում է) F-ին, այնպես էլ M-ը՝ P-ին [Սահմանում 7.20, Հիմք 7.13]: Ուստի, N, O, M, P-ն շարունակաբար համեմատական են A-ի և B-ի, ինչպես նաև C-ի և D-ի, և վերջապես E-ի և F-ի հարաբերությամբ: Ասում եմ, որ դրանք նաև ամենափոքր (թվերն) են A B, C D, E F հարաբերություններում: Քանի որ եթե ոչ, ապա կլինեն որոշ թվեր, որոնք փոքր են N, O, M, P-ից (որոնք) շարունակաբար համեմատական են A B, C D, E F հարաբերություններով: Թող դրանք լինեն Q, R, S, T: Եվ քանի որ ինչպես Q-ն R-ին է, այնպես էլ A-ն (կապակցվում է) B-ին, և A-ն և B-ն ամենափոքրն են (որոնք ունեն նույն հարաբերությունը նրանց հետ), և ամենափոքրները չափում են նույն հարաբերությունն ունեցող թվերը հավասար թվով, առաջնայինը՝ առաջնայինին, և հետևորդը՝ հետևորդին [Հիմք 7.20], B-ն, ուրեմն, չափում է R-ը: Ուստի, նույն (պատճառներով), C-ն նույնպես չափում է R-ը: Այսպիսով, B-ն և C-ն (երկուսն էլ) չափում են R-ը: Այսպիսով, ամենափոքր թիվը, որը չափվում է (և) B-ով և C-ով, նույնպես կչափի R-ը [Հիմք 7.35]: Իսկ G-ն ամենափոքր թիվն է, որը չափվում է (և) B-ով և C-ով: Ուստի G-ն չափում է R-ը: Եվ ինչպես G-ն R-ին է, այնպես էլ K-ն՝ S-ին: Ուստի, K-ն նույնպես չափում է S-ը [Սահմանում 7.20]: Եվ E-ն նույնպես չափում է S-ը [Հիմք 7.20]: Ուստի, E-ն և K-ն (երկուսն էլ) չափում են S-ը: Այսպիսով, ամենափոքր թիվը, որը չափվում է (և) E-ով և K-ով, նույնպես կչափի S-ը [Հիմք 7.35]: Իսկ M-ը ամենափոքր (թիվն է), որը չափվում է (և) E-ով և K-ով: Ուստի, M-ը չափում է S-ը՝ մեծը (չափելով) փոքրին: Սա հակասական է: Ուստի չեն կարող լինել որևէ թվեր, որոնք փոքր են N, O, M, P-ից (որոնք) շարունակաբար համեմատական են A B, C D, E F հարաբերություններում: Ուստի, N, O, M, P-ն ամենափոքր (թվերն) են, որոնք շարունակաբար համեմատական են A B, C D, E F հարաբերություններում: (Ինչը) հենց այն էր, ինչ պահանջվում էր ցույց տալ:
Հարթ թվերը միմյանց նկատմամբ ունեն հարաբերություն, որը կազմված է իրենց կողմերի հարաբերություններից:
Ուստի, հավասարության միջոցով, ինչպես G-ն K-ին է, այնպես էլ A-ն (լինում է) B-ին [Հիմք 7.14]: Եվ G-ն ունի K-ի նկատմամբ հարաբերություն, որը կազմված է կողմերի (A-ի և B-ի) հարաբերություններից: Ուստի, A-ն նույնպես ունի B-ի նկատմամբ հարաբերություն, որը կազմված է կողմերի (A-ի և B-ի) հարաբերություններից:
Եթե որևէ քանակությամբ շարունակաբար համեմատական թվեր կան, և առաջինը չի չափում երկրորդին, ապա ոչ մի այլ (թիվ) չի չափի որևէ այլ (թիվ):