== Պնդում 20 ==
Շրջանի մեջ կենտրոնի մոտ գտնվող անկյունը շրջանագծի մոտ գտնվող անկյան կրկնակին է, երբ անկյունները ունե նույն շրջանագծային հիմքը։ Թող ABC-ն լինի շրջան, և թող BEC-ն լինի նրա կենտրոնի մոտ գտնվող անկյուն, և BAC-ն լինի նակյուն շրջանագծի մոտ։ Եվ թող նրանք ունենան նույն շրջանագծային հիմք BC-ն։ Ես ասում եմ, որ անկյուն BEC-ն անկյուն BAC-ի կրկնակին է։ Միացված լինելու համար, թող AE-ն տարված լինի դեպի F։ Հետևաբար քանի որ EA-ն հավասար է EB-ին, անկյուն EAB-ն նույնպես հավասար է անկյուն EBA-ին [Պնդում 1․5]։ Հետևում է, որ անկյուն EAB-ն և EBA-ն անկյուն EAB-ի կրկնակին են։ Եվ BEF-ը հավասար է EAB-ին և EBA-ին [Պնդում 1․32]։ Հետևում է, որ BEF-ը նույնպես EAB-ի կրկնակին է։ Նույն պատճառներով FEC-ն նույնպես EAC-ի կրկնակին է։ Հետևաբար ամբողջ անկյուն BEC-ն ամբողջ անկյուն BAC-ի կրկնակին է։
[[Պատկեր:Շրջանի_միջի_անկյուններ.png]]