«Տարերք/Գիրք 11»–ի խմբագրումների տարբերություն
Տող 133. | Տող 133. | ||
Եթե երկու հատվուղ ուղիղները զուգահեռ են ուրիշ հատվող ուղիղների, որոնք նույն հարթության մեջ չեն, ապա այդ հատվող ուղիղներով անցնող հարթությունները զուգահեռ են: | Եթե երկու հատվուղ ուղիղները զուգահեռ են ուրիշ հատվող ուղիղների, որոնք նույն հարթության մեջ չեն, ապա այդ հատվող ուղիղներով անցնող հարթությունները զուգահեռ են: | ||
− | [[Պատկեր:Նկար- | + | [[Պատկեր:Նկար-15.png]] |
00:47, 3 Դեկտեմբերի 2024-ի տարբերակ
Pages 431 - 455
Բովանդակություն
Պնդում 7
Եթե երկու զուգահեռ ուղիղների վրա վերցրած պատահական կետերից երկուսը միացնենք, ապա ստացված ուղիղը, որը անցնում է այդ կետերով, կլինի նույն հարթության մեջ, ինչ երկու զուգահեռ ուղիղները։
AB և CD երկու զուգահեռ ուղիղներ են, իսկ E և F կամայական կետեր են համապատասխանաբար AB և CD ուղիղներից։ Ուղիղը, որը միացնում է E և F կետերը, գտնվում է նույն հարթության մեջ, ինչ զուգահեռ ուղիղները։ Եթե դա այդպես չէ, և հնարավոր է, որ ուղիղը անցնի ավելի բարձր հարթությամբ, թող դա լինի EGF հարթությունը։ Այսպիսով, այն կունենա ուղիղ հատված EF՝ հենակետային հարթության մեջ [Պնդ. 11.3]։ Հետևաբար, երկու ուղիղներ՝ EGF-ն և EF-ն (նույն E և F կետերով անցնող) կսահմանափակեն ինչ-որ տարածք, ինչը անհնար է։Հանգունորեն, E և F կետերով անցնող ուղիղը գտնվում է նույն հարթության մեջ, ինչ AB և CD զուգահեռ ուղիղները։
Այսպիսով, եթե կա երկու զուգահեռ ուղիղ, և կամայական կետ նրանցից յուրաքանչյուրի վրա, ապա ուղիղը, որը կմիացնի այդ երկու կետերը, կլինի նույն հարթության մեջ, ինչ զուգահեռ ուղիղները։ Որը վերջինիս պահանջվում էր ցույց տալ։
Պնդում 8
Եթե երկու ուղիղներ զուգահեռ են, և նրանցից մեկը ուղիղ անկյուն է կազմում ինչ որ հարթության հետ, ապա մյուս ուղիղը նույնպես ուղղահայաց կլինի այդ հարթությանը։
AB և CD երկու զուգահեռ ուղիղներ են, և նրանցից մեկը՝ AB, լինի ուղղահայաց դիտարկվող հարթությանը։ Ապա, մյուսը՝ CD, նույնպես կլինի ուղղահայաց նույն հարթությանը։ AB-ն և CD-ն հատվում են դիտարկվող հարթության հետ կետերում B և D համապատասխանաբար, և BD ուղիղը միացնում է այդ կետերը։ Հետևաբար, AB, CD և BD գտնվում են նույն հարթության մեջ [Պնդում 11․7]։ DE ուղիղը ուղղահայաց է BD-ին դիտարկվող հարթություն մեջ և DE-ն հավասար է AB-ին։ Միացնենք BE, AE և AD գծերը։ Քանի որ AB ուղիղը ուղղահայաց է դիտարկվող հարթությանը, այն ուղղահայաց կլինի նաև բոլոր այն ուղիղներին, որոնք նրան են կցված և գտնվում են դիտարկվող հարթությունում [Սահմ 11․3]։ Հետևաբար, անկյուններ՝ ABD և ABE, ուղիղ են։ Եվ քանի որ BD ուղիղը, հատում է AB և CD զուգահեռ ուղիղները, ապա ABD և CDB անկյունների գումարը հավասար է երկու ուղիղ անկյունների։[Պնդում 1․29] Անկյուն ABD-ն ուղիղ է, հետևում է անկյուն CDB-ն նույնպես ուղիղ է։
Եվ քանի որ AB-ն հավասար է DE-ին, իսկ BD-ն ընդհանուր է, ապա երկու ուղիղներ՝ AB և BE, հավասար են ED և DA ուղիղներին , համապատասխանաբար։ Եվ ABD ուղիղ անկյունը հավասար է EDB անկյանը։ Հետևաբար AD հիմքը հավասար է BE հիմքին [Պնդում 1․4]։ Եվ քանի որ AB հատվածը հավասար է DE-ին, և BE-ն հավասար է AD հատվածին , և AB, BE հատվածները համապատասխանաբար հավասար են ED, DA հատվածներին։ Եվ նրանց հիմքը՝ AE-ն, ընդհանուր է։ Հետևաբար, անկյունը՝ ABE, հավասար է անկյանը՝ EDA ([Պնդում 1․8])։ Քանի որ անկյուն ABE-ն ուղիղ է, ապա անկյուն EDA-ն նույնպես ուղիղ է։ Հետևաբար, ED ուղիղը ուղղահայաց է AD-ին։ Եվ այն նաև ուղղահայաց է DB-ին։Այսպիսով, ED ուղիղը ուղիղ անկյուն է կազմում BD և DA ուղիղներով անցնող հարթության հետ ([Պնդում 11․4])։ Այդ պատճառով ED ուղիղ անկյուն կկազմի բոլոր այն ուղիղների հետ որոնք հատվում են իր հետ և ընկած են BDA հարթության մեջ։ DC ուղիղը գտնվում է BDA հարթությունում, քանի որ AB և BD ուղիղները նույնպես գտնվում են BDA հարթությունում ([Պնդում 11․2])։ Հետևաբար, ED ուղիղը ուղղահայաց է DC ուղիղին։Այսպիսով, CD ուղիղը նույնպես ուղղահայաց է DE-ին։ CD ուղիղը ուղղահայաց է նաև BD ուղիղին։ Հետևաբար, CD ուղիղը կանգնած է ուղղանկյուն երկու ուղիղների՝ DE և DB-ի հետ, որոնք հատվում են D կետում։ Այսպիսով, CD ուղիղը նաև ուղղահայաց է DE և DB ուղիղներով անցնող հարթությանը ([Պնդում 11․4])։ Եվ քանի որ DE և DB ուղիղներով անցնող հարթությունը դիտարկվող հարթությունն է, CD ուղիղը ուղղահայաց է նաև դիտարկվող հարթությանը։
Հետևաբար, եթե երկու ուղիղներ զուգահեռ են, և դրանցից մեկը ուղղահայաց է որևէ հարթության, ապա մյուսը նույնպես կլինի ուղղահայաց նույն հարթությանը։ Որն էլ անհրաժեշտ էր ցույց տալ։
Պնդում 9
Երկու ուղիղներ զուգահեռ են երրորդ ուղղին որը նրանց հետ նույն հարթության մեջ չի գտնվում, ապա այդ ուղիղները միմյանց նկատմամբ նույնպես զուգահեռ են։
AB և CD ուղիղներից յուրաքանչյուրը զուգահեռ է EF ուղղին, որը նույն հարթության մեջ չէ։ Ցույց տանք որ AB և CD ուղիղները զուգահեռ են։ Պատահականորեն վերցնենք մի G կետ EF ուղղի վրա։ GH ուղիղը EF ուղղի հետ կազմում է ուղիղ անկյուն EF և AB ուղիղներով անցնող հարթության մեջ։ Եվ EF-ն ուղղահայաց է GK ուղղին՝ FE և CD ուղիղներով անցնող հարթության վրա:
Եվ քանի որ EF ուղիղը ուղղահայաց է GH-ին և GK-ին, ապա EF-ն ուղղահայաց է նաև GH և GK ուղիղներով անցնող հարթությանը [Պնդ․ 11.4]: Եվ EF ուղիղը AB-ին զուգահեռ է: Ուստի AB-ն նույնպես ուղղահայաց է HGK հարթությանը [Պնդ․ 11.8]: Հանգունորեն CD-ն նույնպես ուղղահայաց է HGK հարթությանը:
Արդյունքում՝ AB և CD ուղիղները ուղղահայաց են HGK հարթությանը: Իսկ եթե երկու ուղիղներ նույն հարթությանն ուղղահայաց են, ապա այդ ուղիղները զուգահեռ են [Պնդ․ 11․6]: Ուստի AB-ն զուգահեռ է CD-ին։ Ինչ պետք էր ապացուցել։
Պնդում 10
Եթե երկու հատվող ուղիղներ զուգահեռ են այլ հարթության մեջ գտնվող երկու հատվող ուղիղների, ապա հարթությունները պարունակում են հավասար անկյուններ։
Իրար միացած երկու ուղիղները՝ AB և BC, զուգահեռ են (համապատասխանաբար) միմյանց միացած երկու ուղիղների՝ DE և EF որոնք վերջիններս ընկած չեն AB և BC ուղիղներով անցնող հարթությանը ։Ցույց տանք, որ ABC անկյունը հավասար է DEF անկյանը: BA, BC, ED և EF ուղիղները կտրենք (այնպես, որ համապատասխանաբար հավասար լինեն միմյանց): Միացնենք AD, CF, BE, AC և DF հատվածները:Եվ քանի որ BA ուղիղը հավասար և զուգահեռ է ED-ին, Հետևաբար AD ուղիղը, նույնպես հավասար և զուգահեռ է BE ուղղին [Պնդ. 1.33]: Հանգունորեն CF ուղիղը նույնպես հավասար և զուգահեռ է BE-ին: Այսպիսով, AD և CF հատվածներից յուրաքանչյուրը հավասար և զուգահեռ են BE-ին: Նույն ուղղին զուգահեռ ուղիղները, որոնք նրա հետ նույն հարթության մեջ չեն, զուգահեռ են միմյանց [Պնդ. 11.9]։ Այսպիսով, AD հատվածը զուգահեռ է և հավասար է CF-ին: AC և DF միացնենք նրանց: Այսպիսով, AC-ը նույնպես հավասար է և զուգահեռ DF հատվածին [Պնդ. 1.33]: Եվ քանի որ երկու հատվածներ AB-ն և BC-ն հավասար են երկու հատվածներին՝ DE-ին և EF-ին (համապատասխանաբար), իսկ AC հիմքը հավասար է DF հիմքին, այսպիսով ABC անկյունն հավասար է DEF անկյանը [Պնդ. 1.8]:
Հետևաբար, եթե միմյանց միացված երկու ուղիղները (համապատասխանաբար) զուգահեռ են միմյանց միացած երկու ուղիղներին, որոնք ընկած չեն նույն հարթության մեջ ինչ որ սկզբնական երկու ուղիղները, ապա դրանք կպարունակեն հավասար անկյուններ։ Որը անհրաժեշտ էր ցույց տալ։
Պնդում 11
Կետից հարթությանը ուղղահայաց ուղղի կառուցումը։
A կետը դիտարկվող կետն է: Այսպիսով, պահանջվում է ուղղահայաց ուղիղ գծել A կետից հարթությանը: Պատահական BC ուղիղ գծենք դիտարկվող հարթությունում, և AD ուղիղը գծենք BC-ին ուղղահայաց A կետից [Պնդ. 1.12]: Հետևաբար, եթե AD ուղիղը նույնպես ուղղահայաց է դիտարկվող հարթությանը, ապա տեղի կունենա այն, ինչ նախատեսված էր:Իսկ, եթե ոչ, D կետից՝ դիտարկվող հարթության մեջ BC ուղղին ուղահայաց DE ուղիղը գծենք [Պնդ. 1.11], և AF ուղիղը գծենք A կետից DE ուղղին ուղղահայաց վերջիններս կհատի DE ուղղին F կետում[Պնդ. 1.12], և F կետով անցնող GH ուղիղը գծենք, որը զուգահեռ է BC ուղղին [Պնդ. 1.31]:
Եվ քանի որ BC-ն ուղիղ անկյուն է կազմում DA և DE ուղիղներից յուրաքանչյուրի հետ,հետևաբար BC-ն, ուղղահայաց է EDA հարթությանը [Պնդ. 11.4]: Իսկ GH ուղիղը զուգահեռ է BC-ին։ Եթե երկու ուղիղները զուգահեռ են, և դրանցից մեկը ուղղահայաց է ինչ-որ հարթությանը, ապա մյուսը նույնպես կլինի նույն հարթությանն ուղղահայաց[Պնդ. 11.8]:Այսպիսով, GH ուղիղը նույնպես ուղղահայաց է ED և DA ուղիղներով անցնող հարթությունը։ Այսպիսով, GH ուղիղը ուղիղ անկյուն է կազմում իրեն միացած բոլոր ուղիղների հետ, որոնք նույնպես ED և AD ուղիղներով անցնող հարթության մեջ են [Սահմ. 11.3]: Եվ AF-ն, որը գտնվում է ED և AD ուղիղներով անցնող հարթության մեջ, միացված է այդ ուղղին: Այսպիսով, GH և AF ուղիղներըուղղահայաց են: Հետևաբար, AF-ն ուղղահայաց է HG ուղղին: AF-ն նույնպես ուղղահայաց է DE ուղղին: Այսպիսով, AF-ն ուղղահայաց է GH և DE ուղիղներից յուրաքանչյուրին: Եվ եթե ուղիղը կազմում են ուղիղ անկյուն երկու հատվող ուղիղների հետ, ապա այն ուղղահայաց կլինի այդ ուղիղներով անցնող հարթությանը [Պնդ. 11.4]: Այսպիսով, FA-ն ուղղահայաց է ED և GH ուղիղներով անցնող հարթությանը: Իսկ ED-ի և GH-ի ուղիղներով անցնող հարթությունը հենց դիտարկվող հարթությունն էր: Այսպիսով, AF ուղիղը ուղղահայաց է դիտարկվող հարթությանը:
Այսպիսով, A կետով անցնող AF ուղիղը ուղղահայաց է դիտարկվող հարթությանը: Ինչը հենց պահանջվում էր կառուցել:
Պնդում 12
Տվյալ կետից, դիտարկվող հարթությանը տարված ուղղահայացի կառուցումը։
Տրված հարթությունը դիտարկվող հարթությունն է, իսկ A-ն այդ հարթությանը պատկանող կետ: Այսպիսով, պահանջվում է A կետով անցնող և դիտարկվող հարթությանը ուղղահայաց ուղիղ կառուցել:Կամայական B կետից տանենք ուղղահայաց դիտարկվող հարթությանը, որը կհատի հարթությունը C կետում [Պնդ. 11.11]: BC-ին զուգահեռ և A կետով անցնող ուղիղ գծենք AD-ն [Պնդ. 1.31]:Քանի որ AD-ն և CB-ն երկու զուգահեռ ուղիղներ են, և դրանցից մեկը՝ BC-ն, ուղղահայաց է դիտարկվող հարթությանը հետևաբար, AD ուղիղը նույնպես ուղղահայաց է դիտարկվող հարթությանը [Պնդ. 11.8]:
Հետևաբար AD ուղիղը A կետով անցնող և հարթությանը ուղղահայաց ուղիղ է։ Ինչը պահանջվում էր կառուցել։
Պնդում 13
Երկու տարբեր ուղիղներ չեն կարող անցնել մի կետով և միևնույն ժամանակ ուղղահայաց լինել նույն հարթության նույն կողմին։
Ենթադրենք հնարավոր է, ուրեմն երկու ուղիղներ AB և AC տեղադրենք միևնույն A կետում՝ դիտարկվող հարթությանը ուղղահայաց: Գծենք BA և AC ուղիղներով անցնող հարթություն: Այսպիսով, այն կհատի դիտարկվող հարթությունը A կետով անցնող DAE ուղղով[Պնդ. 11.3]: Այսպիսով, AB, AC և DAE ուղիղները ընկած են մեկ հարթության մեջ, և քանի որ CA-ն ուղղահայաց է դիտարկվող հարթությանը, այդպիսով այն նաև ուղղահայաց է դիտարկվող հարթության մեջ գտնվող բոլոր ուղիղներին[Պնդ. 11.3]: DAE-ն, որը գտնվում է դիտարկվող հարթության մեջ, միացված է դրան։Հետևաբար, CAE անկյունը ուղիղ է: Հանգունորեն BAE անկյունը նույնպես ուղիղ է։ Այսպիսով, CAE անկյունը հավասար է BAE անկյանը: Եվ նրանք մեկ հարթության մեջ են։ Ինչը անհնար է։
Այսպիսով, միևնույն կետով անցնող երկու (տարբեր) ուղիղներ չեն կարող, նույն հարթության, նույն կողմին ուղղահայաց լինել: Ինչը հենց պահանջվում էր ցույց տալ:
Պնդում 14
Հարթությունները որոնք միևնույն ուղղին ուղղահայաց են ապա միմյանց զուգահեռ են։
AB-ն կամայական ուղիղ է որը ուղղահայաց է CD և EF հարթություններին։ Ցույց տանք, որ այդ հարթությունները զուգահեռ են։ Հակառակ դեպքում հարթությունները կհատվեն։ Նրանք կհատվեն մի ընդհանուր ուղղով [Պնդ. 11.3]:Ենթադրենք GH-ն հարթությունների ընդհանուր ուղիղն է։ Կամայական K կետ վերցնենք GH ուղղի վրա: Միացնենք AK և BK հատվածները։ AB-ն ուղղահայաց է EF հարթությանը և BK ուղղին։Հետևաբար, ABK անկյունը ուղիղ է: Նույն պատճառներով BAK անկյունը նույնպես ուղիղ է։ Այսպիսով, ABK եռանկյան ABK և BAK երկու անկյունը ուղիղ են: Ինչը անհնար է [Պնդ. 1.17]:Հետևաբար, CD և EF հարթությունները, չեն հատվում՝ CD և EF հարթությունները զուգահեռ են [Սահմ. 11.8]:
Այսպիսով, Հարթությունները որոնք միևնույն ուղղին ուղղահայաց են ապա այդ հարթությունները զուգահեռ են: Ինչ պահանջվում էր ցույց տալ:
Պնդում 15
Եթե երկու հատվուղ ուղիղները զուգահեռ են ուրիշ հատվող ուղիղների, որոնք նույն հարթության մեջ չեն, ապա այդ հատվող ուղիղներով անցնող հարթությունները զուգահեռ են:
AB և BC հատվող ուղիղները, զուգահեռ են երկու հատվող ուղիղների՝ DE և EF որոնք չեն գտնվում նույն հարթության մեջ։ Ցույց տանք, որ AB, BC և DE, EF ուղիղներով անցնող հարթությունները չեն հատվում:BG-ն, B կետից DE և EF ուղիղներով անցնող հարթությանը ուղղահայաց ուղիղ է [Պնդ. 11.11],վերջինիս հատում է հարթությունը G կետում : GH-ն G-ի կետով անցնող և ED ուղղին զուգահեռ ուղիղ է, GK ուղիղը զուգահեռ EF-ին [Պնդ. 1.31]:Եվ քանի որ BG-ն ուղղահայաց է DE և EF ուղիղներով անցնող հարթությանը, այդպիսով այն նաև ուղղահայաց կլինի բոլոր այն ուղիղներին որոնք պատկանում են այդ հարթությանը[Սահմ. 11.3]: Եվ GH և GK ուղիղներից յուրաքանչյուրը, որոնք գտնվում են DE և EF ուղիղներով անցնող հարթության մեջ, միացված են BG ուղղին: Այսպիսով, BGH և BGK անկյունները ուղիղ են: Եվ քանի որ BA-ն զուգահեռ է GH-ին [Պնդ. 11.9], GBA և BGH անկյունները ուղիղ են[Պնդ. 1.29]: Անկյուն BGH նույնպես ուղիղ է։Անկյուն GBA-ն ուղիղ է: GB-ն ուղղահայաց է BA-ին: Այսպիսով, նույն կերպ GB-ն ուղղահայաց է BC-ին։ Հետևաբար GB ուղիղը ուղղահայաց է՝ BA և BC ուղիղներին,այսպիսով GB-ն ուղղահայաց է BA և BC ուղիղներով անցնող հարթությանը [Պնդ. 11.4]:Իսկ հարթությունները, որոնց նույն ուղիղը ուղղահայաց է, զուգահեռ են [Պնդ 11.14]: Այսպիսով, AB և BC ուղիղներով անցնող հարթությունը զուգահեռ է DE և EF ուղիղներով անցնող հարթությանը:
Հանգունորն, եթե միմյանց միացված երկու ուղիղները զուգահեռ են միմյանց միացված երկու ուղիղների, որոնք նույն հարթության մեջ չեն, ապա այդ ուղիղներով անցնող հարթությունները զուգահեռ են: Ինչ պահանջվում էր ցույց տալ:
Պնդում 16
Եթե երկու զուգահեռ հարթություններ հատվում են ինչ-որ հարթությամբ, ապա առաջացած ուղիղները զուգահեռ են։
Երկու զուգահեռ հարթություններ AB և CD հատվում են EFGH հարթությամբ։ Իսկ EF և GH ուղիղները հատումից հառաջացած ուղիղներն են։ Ցույց տանք որ EF և GH ուղիղները զուգահեռ են։ Հակառակ դեպքում, EF-ն և GH-ը կհատվեն կա՛մ F, H, կա՛մ E, G-ի ուղղությամբ: Ենթադրենք հատվում են K կետում՝ F, H-ի ուղղությամբ: Եվ քանի որ EFK ուղիղը ընկած է AB հարթության մեջ, հետևաբար EFK ուղղի բոլոր կետերը ընկած են այդ հարթության մեջ [Պնդ. 11.1]։ Իսկ K-ն EFK ուղղին պատկանող կետերից մեկն է։ Հետևաբար, K-ն AB հարթությանը պատկանող կետ է: Նույն պատճառներով K-ն նաև CD-ին պատկանող կետ է։ Այսպիսով, AB և CD հարթությունները հատվում են։ Բայց նրանք չեն հատվում, քանի որ ի սկզբանե ենթադրվում էր զուգահեռությունը: Այսպիսով, EF և GH ուղիղները, F, H ուղղությամբ, չեն հատվում:Հանգունորեն, մենք կարող ենք ցույց տալ, որ EF և GH ուղիղները, E, G ուղղությամբ, նույնպես չեն հատվում [Սահ. 1.23]:Ստացվում է, որ EF-ը զուգահեռ է GH-ին:
Այսպիսով, եթե երկու զուգահեռ հարթություններ հատված են ինչ-որ հարթությամբ, ապա դրանց ընդհանուր հատվածները զուգահեռ են:Ինչ պահանջվում էր ցույց տալ։
Պնդում 17
Եթե երկու ուղիղներ կտրվեն զուգահեռ հարթություններով, ապա առաջացած հատվածները կհարաբերվեն հավասարապես:
Երկու ուղիղներ AB և CD հատվում են GH, KL և MN զուգահեռ հարթություններով A, E, B և C, F, D կետերում համապատասխանաբար: Ցույց տանք, որ ուղիղ AE հարաբերում է EB-ին, այնպես ինչպես CF-ն FD-ին: AC, BD և AD ուղիղները միացնենք, AD ուղիղը հատում է KL հարթությանը O կետում, EO-ն և OF-ն միացնենք:Եվ քանի որ երկու զուգահեռ հարթություններ KL և MN հատված են EBDO հարթությամբ, նրանց ընդհանուր ուղիղները EO և BD զուգահեռ են [Պնդ. 11.16]: Այսպիսով, նույն կերպ, երկու զուգահեռ հարթություններ GH և KL հատված են AOFC հարթությամբ, նրանց ընդհանուր AC և OF հատվածները զուգահեռ են [Պնդ. 11.16]: Եվ քանի որ EO ուղիղը գծվել է ABD եռանկյան BD կողմին զուգահեռ, հետևաբար համաչափ են, AE հատվածի հարաբերությունը EB հատվածին, AO-ի հարաբերությունը OD-ն։ Քանի որ OF ուղիղը եռանկյունի ADC-ի AC կողմին զուգահեռ է, հետևաբար AO-ն հարաբերում է OD-ին, այնպես ինչպես CF-ը FD-ին [Պնդ. 6.2]: Հանգունորեն AO հարաբերում է OD այնպես, ինչպես AE-ն, EB-ին, ինչպես CF-ն, FD-ին:
Այսպիսով, եթե երկու ուղիղներ հատվեն զուգահեռ հարթություններով, ապա առաջացած հատվածները կհարաբերեն նույն կերպ:Ինչ պահանջվում էր ցույց տալ: