«Տարերք/Գիրք 3»–ի խմբագրումների տարբերություն
(→Սահմանումներ) |
(→Պնդում 1) |
||
Տող 21. | Տող 21. | ||
10. Շրջանի սեկտորը այն պատկերն է, | 10. Շրջանի սեկտորը այն պատկերն է, | ||
− | == Պնդում 1 == | + | == Պնդում 1 == |
+ | |||
+ | Գտնել տրված շրջանի կենտրոնը։ | ||
+ | |||
+ | Դիցուք՝ տրված է ABC շրջանը։ Պահանջվում է գտնել ABC շրջանի կենտրոնը։ | ||
+ | ABC շրջանով կառուցենք կամայական AB հատված և հավասար կիսենք այն D կետում [Պնդում 1․9]։ AB-ին ուղղահայաց՝D կետով կառուցենք DC-ն [Պնդում 1․11]։ E կետով էլ կառուցենք CD-ն։ CE-ն հավասար կիսենք F կետով [Պնդում 1․9]։ Ես պնդում էմ, որ F-ը ABC շրջանի կենտրոնն է։ | ||
+ | Եթե այդպես չէ, ապա ենթադրենք, որ կենտրոնը G-ն է և կառուցենք GA, GD և GB հատվածները։ Եվ քանի որ AD-ն ու DB-ն հավասար են, DG էլ՝ ընդհանուր, AD և DG, BD և DG համապատասխանաբար հավասար են։ Հավասար են նաև GA և GB հիմքերը, քանի որ երկուսն էլ շառավիղներ են։ Հետևաբար, ADG անկյունը հավասար է GDB անկյանը [Պնդում 1․8]։ Երբ միմյանց ուղղահայաց հատվածները իրար հավասար կից անկյուններ են կազմում, նշանակում է, որ այդ անկյունները ուղիղ անկյուններ են [Սահմանում 1․10]։ Հետևում է, որ GDB-ն և FDB-ն ուղիղ անկյուններ են և հետևաբար, հավասար են միմյանց։ Սակայն անկյուններից մոկը մյուսից մեծ է, ինչը հնարավոր չէ։ Ստացվում է, որ G-ն շրջանի կենտրոնը չէ։ Նույն կերպ կարող ենք ցույց տալ նաև, որ ցանկացաց կետ բացի F-ից, ABC շրջանի կենտրոնը չէ։ | ||
+ | |||
+ | [[Պատկեր:Screenshot_2024-12-06_173443.png|center|200px]] | ||
+ | |||
+ | Հետևաբար, F-ը ABC շրջանի կենտրոնն է։ | ||
== Հետևանք == | == Հետևանք == |
17:39, 6 Դեկտեմբերի 2024-ի տարբերակ
Բովանդակություն
Սահմանումներ
1. Հավասար են համարվում այն շրջանները, որոնց տրամագծերը կամ կենտրոնից շրջանագիծ ընկած հեռավորությունները հավասար են (շառավղերը հավասար են)։
2. Հատվածը համարվում է շրջանագծի շոշափող, եթե այն շրջանագծին հասնելիս և շարունակվելիս՝ չի հատում այն։
3. Իրար շոշափող են համարվում այն շրջանները, որոնք միմյանց հասնելիս՝ մեկը մյուսին չեն հատում։
4. Շրջանագծում հատվածները կենտրոնից նույն հեռավորությունը կունենան, եթե կենտրոնից նրանց տարված ուղղահայացները հավասար լինեն։
5. Շրջանագծում հատվածներից կենտրոնից ավելի հեռու է համարվում այն մեկը, որին կենտրոնից տարված ուղղահայացը ավելի երկար է։
6. Շրջանի սեգմենտը այն պատկերն է, որը պարունակում են հատվածն ու շրջանագիծը։
7. Սեգմենտի անկյունը այն այնկյունն է, որը պարունակում են հատվածն ու շրջանագիծը։
8. Սեգմենտի միջի անկյունը այն այնկյունն է, որը պարունակում են շրջանագծի վրա վերցված կետից տարված երկու հատվածները, որոնք միանում են այն հատվածի գագաթներին որը սեգմենտի հիմքն է։
9. Աղեղի վրա ընկած անկյունը այն անկյունն է, որին կից հատվածները հատում են շրջանագիծը՝ իրենց մեջ առնելով դրա որոշ հատված։
10. Շրջանի սեկտորը այն պատկերն է,
Պնդում 1
Գտնել տրված շրջանի կենտրոնը։
Դիցուք՝ տրված է ABC շրջանը։ Պահանջվում է գտնել ABC շրջանի կենտրոնը։ ABC շրջանով կառուցենք կամայական AB հատված և հավասար կիսենք այն D կետում [Պնդում 1․9]։ AB-ին ուղղահայաց՝D կետով կառուցենք DC-ն [Պնդում 1․11]։ E կետով էլ կառուցենք CD-ն։ CE-ն հավասար կիսենք F կետով [Պնդում 1․9]։ Ես պնդում էմ, որ F-ը ABC շրջանի կենտրոնն է։ Եթե այդպես չէ, ապա ենթադրենք, որ կենտրոնը G-ն է և կառուցենք GA, GD և GB հատվածները։ Եվ քանի որ AD-ն ու DB-ն հավասար են, DG էլ՝ ընդհանուր, AD և DG, BD և DG համապատասխանաբար հավասար են։ Հավասար են նաև GA և GB հիմքերը, քանի որ երկուսն էլ շառավիղներ են։ Հետևաբար, ADG անկյունը հավասար է GDB անկյանը [Պնդում 1․8]։ Երբ միմյանց ուղղահայաց հատվածները իրար հավասար կից անկյուններ են կազմում, նշանակում է, որ այդ անկյունները ուղիղ անկյուններ են [Սահմանում 1․10]։ Հետևում է, որ GDB-ն և FDB-ն ուղիղ անկյուններ են և հետևաբար, հավասար են միմյանց։ Սակայն անկյուններից մոկը մյուսից մեծ է, ինչը հնարավոր չէ։ Ստացվում է, որ G-ն շրջանի կենտրոնը չէ։ Նույն կերպ կարող ենք ցույց տալ նաև, որ ցանկացաց կետ բացի F-ից, ABC շրջանի կենտրոնը չէ։
Հետևաբար, F-ը ABC շրջանի կենտրոնն է։