Changes
/* Պնդում 4 */
Հետևաբար, ուղիղը կամայականորեն բաժանված է մասերի, ապա ամբողջ ուղղով և նրա մասերից մեկով կազմված ուղղանկյունը հավասար է այդ մասով կազմված քառակուսու և ուղղի երկու մասերով կազմված ուղղանկյան գումարին։ Սա այն էր, ինչ պետք էր ապացուցել։
== Պնդում 4 <ref>Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ <math>(a + b)^2 =a^2 + b^2 + 2ab.</math></ref>== Եթե ուղիղը կամայականորեն բաժանված է մասերի, ապա ամբողջ ուղղով կազմված քառակուսին հավասար է նրա մասերի քառակուսիների գումարին և այդ մասերի արտադրյալի կրկնապատիկին: [[Պատկեր:ElementsBook2-Propostion4.png|center|200px]] Այսպիսով, եթե ուղիղը կամայականորեն բաժանված է մասերի, ապա ամբողջ ուղղով կազմված քառակուսին հավասար է նրա մասերի քառակուսիների գումարին և այդ մասերի արտադրյալի կրկնապատիկին։ Սա այն էր, ինչ պետք էր ապացուցել։
== Պնդում 5 ==