«Տարերք/Գիրք 10»–ի խմբագրումների տարբերություն

Գրապահարան-ից
(Պնդում 102)
Տող 29. Տող 29.
  
 
Սա այն էր, ինչ անհրաժեշտ էր ապացուցել։
 
Սա այն էր, ինչ անհրաժեշտ էր ապացուցել։
 +
 +
 +
==Պնդում 103==
 +
Ուղիղ գիծը, որը երկարությամբ համաչափ է ապոտոմեի հետ, ինքն էլ ապոտոմե է և նույն կարգի է։
 +
[[Պատկեր:103.png|center|350px]]
 +
Թող AB-ն լինի ապոտոմե, և թող CD-ն լինի երկարությամբ համաչափ AB-ի հետ։ Ասում եմ, որ CD-ն նույնպես ապոտոմե է և նույն կարգի է, ինչ AB-ն։
 +
 +
Քանի որ AB-ն ապոտոմե է, թող BE-ն լինի կցորդ դրան։ Այսպիսով, AE-ն և EB-ն ռացիոնալ (ուղիղ գծեր են, որոնք) համաչափ են միայն քառակուսիներով [Տե՛ս "Տարրեր" 10.73]։ Եվ թող այնպես լինի, որ BE-ի և DF-ի հարաբերությունը նույնն է, ինչ AB-ի և CD-ի հարաբերությունը [Տե՛ս "Տարրեր" 6.12]։ Այսպիսով, ինչպես մեկ է մեկի նկատմամբ, այնպես էլ ամեն ինչ՝ ամեն ինչի [Տե՛ս "Տարրեր" 5.12]։ Եվ ինչպես ամբողջ AE-ն է ամբողջ CF-ի նկատմամբ, այնպես էլ AB-ն է CD-ի նկատմամբ։ Եվ AB-ն համաչափ է երկարությամբ CD-ի հետ։ AE-ն, հետևաբար, նույնպես համաչափ է CF-ի հետ, և BE-ն՝ DF-ի հետ [Տե՛ս "Տարրեր" 10.11]։
 +
 +
Եվ AE-ն և BE-ն ռացիոնալ (ուղիղ գծեր են, որոնք) համաչափ են միայն քառակուսիներով։ Այսպիսով, CF-ն և FD-ն նույնպես ռացիոնալ (ուղիղ գծեր են, որոնք) համաչափ են միայն քառակուսիներով [Տե՛ս "Տարրեր" 10.13]։ Ուստի, CD-ն ապոտոմե է։ Ասում եմ, որ այն նույնպես նույն կարգի է, ինչ AB-ն։
 +
 +
Ուստի, քանի որ ինչպես AE-ն է CF-ի նկատմամբ, այնպես էլ BE-ն է DF-ի նկատմամբ, ապա, այլընտրանքով, ինչպես AE-ն է EB-ի նկատմամբ, այնպես էլ CF-ն է FD-ի նկատմամբ [Տե՛ս "Տարրեր" 5.16]։ Այսպիսով, AE-ի վրա կառուցված քառակուսին մեծ է EB-ի վրա կառուցված քառակուսուց կամ որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը համաչափ է կամ անհամաչափ AE-ի հետ։
 +
 +
Ուստի, եթե AE-ի վրա կառուցված քառակուսին մեծ է EB-ի վրա կառուցված քառակուսուց որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը համաչափ է AE-ի հետ, ապա CF-ի վրա կառուցված քառակուսին նույնպես մեծ կլինի FD-ի վրա կառուցված քառակուսուց որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը համաչափ է CF-ի հետ [Տե՛ս "Տարրեր" 10.14]։ Եվ եթե AE-ն երկարությամբ համաչափ է նախապես տրված ռացիոնալ ուղիղ գծի հետ, ապա նույնը նաև CF-ն է [Տե՛ս "Տարրեր" 10.12]։ Եվ եթե BE-ն համաչափ է, ապա նաև DF-ը։ Եվ եթե ոչ AE-ն և ոչ էլ EB-ն համաչափ չեն, ապա նույնը նաև CF-ն և FD-ն [Տե՛ս "Տարրեր" 10.13]։
 +
 +
Եվ եթե AE-ի վրա կառուցված քառակուսին մեծ է EB-ի վրա կառուցված քառակուսուց որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը անհամաչափ է AE-ի հետ, ապա CF-ի վրա կառուցված քառակուսին նույնպես մեծ կլինի FD-ի վրա կառուցված քառակուսուց որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը անհամաչափ է CF-ի հետ [Տե՛ս "Տարրեր" 10.14]։ Եվ եթե AE-ն երկարությամբ համաչափ է նախապես տրված ռացիոնալ ուղիղ գծի հետ, ապա նույնը նաև CF-ն է [Տե՛ս "Տարրեր" 10.12]։ Եվ եթե BE-ն համաչափ է, ապա նաև DF-ը։ Եվ եթե ոչ AE-ն և ոչ էլ EB-ն համաչափ չեն, ապա նույնը նաև CF-ն և FD-ն [Տե՛ս "Տարրեր" 10.13]։
 +
 +
Ուստի, CD-ն ապոտոմե է և նույն կարգի է, ինչ AB-ն [Տե՛ս "Տարրեր" 10.11-10.16]։ Սա այն էր, ինչ անհրաժեշտ էր ապացուցել։

22:52, 11 Դեկտեմբերի 2024-ի տարբերակ

Տարերք, Գիրք 10

հեղինակ՝ էվկլիդես
աղբյուր՝ Euclid's Elements of Geometry, English translation by Richard Fitzpatrick

Տարերքի գրքեր

Պնդում 102

Այն (ուղիղ գիծը), որի վրա կառուցված քառակուսին միջինական մակերեսի հետ միասին կազմում է միջինական ամբողջություն, ռացիոնալ (ուղիղ գծի) վրա դրված` ստանում է վեցերորդ կտրվածք (ապոտոմե) որպես լայնություն։

1.png

Թող AB-ն լինի այն ուղիղ գիծը, որը միջինական մակերեսի հետ կազմում է միջինական ամբողջություն, և CD-ն լինի ռացիոնալ (ուղիղ գիծ): Եվ թող CE-ն, որը հավասար է AB-ի վրա կառուցված քառակուսուն, դրված լինի CD-ի վրա, պարփակված AG-ով և GB-ով, որոնք միջինական են, և AG-ի և GB-ի վրա կառուցված քառակուսիների գումարը անհամաչափ է AG-ով և GB-ով պարփակված կրկնապատիկ ուղղանկյունին [Տե՛ս "Տարրեր" 10.78]:

Ուստի, թող CH-ն, որը հավասար է AG-ի վրա կառուցված քառակուսուն, դրված լինի CD-ի վրա, արտադրելով CK որպես լայնություն, և KL-ը, որը հավասար է GB-ի վրա կառուցված քառակուսուն։ Այսպիսով, CL-ի ամբողջությունը հավասար է AG-ի և GB-ի վրա կառուցված քառակուսիների գումարին։ CL-ը, հետևաբար, միջինական է։ Եվ այն դրված է ռացիոնալ CD-ի վրա, արտադրելով CM որպես լայնություն։ Ուստի, CM-ը ռացիոնալ է և անհամաչափ է երկարությամբ CD-ի հետ [Տե՛ս "Տարրեր" 10.22]:

Հետևաբար, քանի որ CL-ը հավասար է AG-ի և GB-ի վրա կառուցված քառակուսիների գումարին, որոնցից CE-ն հավասար է AB-ի վրա կառուցված քառակուսուն, մնացորդ FL-ը, հետևաբար, հավասար է AG-ով և GB-ով պարփակված կրկնապատիկ ուղղանկյունին [Տե՛ս "Տարրեր" 2.7]: Եվ քանի որ AG-ով և GB-ով պարփակված կրկնապատիկ ուղղանկյունը միջինական է, FL-ը նույնպես միջինական է։ Եվ այն դրված է ռացիոնալ FE-ի վրա, արտադրելով FM որպես լայնություն։ Ուստի, FM-ը ռացիոնալ է և անհամաչափ է երկարությամբ CD-ի հետ [Տե՛ս "Տարրեր" 10.22]:

Քանի որ AG-ի և GB-ի վրա կառուցված քառակուսիների գումարը անհամաչափ է AG-ով և GB-ով պարփակված կրկնապատիկ ուղղանկյան հետ, CL-ը հավասար է AG-ի և GB-ի վրա կառուցված քառակուսիների գումարին, իսկ FL-ը հավասար է AG-ով և GB-ով պարփակված կրկնապատիկ ուղղանկյան, CL-ը, հետևաբար, անհամաչափ է FL-ի հետ։ Եվ ինչպես CL-ն է FL-ի նկատմամբ, այնպես էլ CM-ը MF-ի նկատմամբ է [Տե՛ս "Տարրեր" 6.1]:

Ուստի, CM-ը երկարությամբ անհամաչափ է MF-ի հետ [Տե՛ս "Տարրեր" 10.11]: Եվ երկուսն էլ ռացիոնալ են։ Ուստի, CM-ն և MF-ն ռացիոնալ ուղիղ գծեր են, որոնք համաչափելի են միայն քառակուսիներով։ CF-ը, հետևաբար, ապոտոմե է [Տե՛ս "Տարրեր" 10.73]: Ուրեմն, ես ասում եմ, որ այն նաև վեցերորդ (կտրվածքն) է։

Քանի որ FL-ը հավասար է AG-ով և GB-ով պարփակված կրկնապատիկ ուղղանկյանին, թող FM-ը բաժանված լինի կեսի վրա N-ում, և թող NO-ն քաշված լինի N-ի միջով, զուգահեռ CD-ին։ Այսպիսով, FO-ն և NL-ը յուրաքանչյուրն հավասար են AG-ով և GB-ով պարփակված ուղղանկյան։ Եվ քանի որ AG-ն և GB-ն անհամաչափ են քառակուսով, AG-ի վրա կառուցված քառակուսին, հետևաբար, անհամաչափ է GB-ի վրա կառուցված քառակուսու հետ։ Սակայն, CH-ը հավասար է AG-ի վրա կառուցված քառակուսուն, իսկ KL-ը հավասար է GB-ի վրա կառուցված քառակուսուն։

Ուստի, CH-ը անհամաչափ է KL-ի հետ։ Եվ ինչպես CH-ն է KL-ի նկատմամբ, այնպես էլ CK-ն KM-ի նկատմամբ է [Տե՛ս "Տարրեր" 6.1]: Ուստի, CK-ն երկարությամբ անհամաչափ է KM-ի հետ [Տե՛ս "Տարրեր" 10.11]: Եվ քանի որ AG-ով և GB-ով պարփակված ուղղանկյունը միջին չափաբաժին է AG-ի և GB-ի վրա կառուցված քառակուսիների միջև [Տե՛ս "Տարրեր" 10.21-ի լեմմա], իսկ CH-ը հավասար է AG-ի վրա կառուցված քառակուսուն, KL-ը՝ GB-ի վրա կառուցված քառակուսուն, NL-ը՝ AG-ով և GB-ով պարփակված ուղղանկյունին, NL-ը, հետևաբար, նույնպես միջին չափաբաժին է CH-ի և KL-ի միջև։

Ուստի, ինչպես CH-ն է NL-ի նկատմամբ, այնպես էլ NL-ը KL-ի։ Եվ նույն տրամաբանությամբ, CM-ի վրա կառուցված քառակուսին մեծ է MF-ի վրա կառուցված քառակուսուց որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը լայնությամբ արտադրում է CF։ Ես ասում եմ, որ CF-ը վեցերորդ ապոտոմեն է։

Սա այն էր, ինչ անհրաժեշտ էր ապացուցել։


Պնդում 103

Ուղիղ գիծը, որը երկարությամբ համաչափ է ապոտոմեի հետ, ինքն էլ ապոտոմե է և նույն կարգի է։

103.png

Թող AB-ն լինի ապոտոմե, և թող CD-ն լինի երկարությամբ համաչափ AB-ի հետ։ Ասում եմ, որ CD-ն նույնպես ապոտոմե է և նույն կարգի է, ինչ AB-ն։

Քանի որ AB-ն ապոտոմե է, թող BE-ն լինի կցորդ դրան։ Այսպիսով, AE-ն և EB-ն ռացիոնալ (ուղիղ գծեր են, որոնք) համաչափ են միայն քառակուսիներով [Տե՛ս "Տարրեր" 10.73]։ Եվ թող այնպես լինի, որ BE-ի և DF-ի հարաբերությունը նույնն է, ինչ AB-ի և CD-ի հարաբերությունը [Տե՛ս "Տարրեր" 6.12]։ Այսպիսով, ինչպես մեկ է մեկի նկատմամբ, այնպես էլ ամեն ինչ՝ ամեն ինչի [Տե՛ս "Տարրեր" 5.12]։ Եվ ինչպես ամբողջ AE-ն է ամբողջ CF-ի նկատմամբ, այնպես էլ AB-ն է CD-ի նկատմամբ։ Եվ AB-ն համաչափ է երկարությամբ CD-ի հետ։ AE-ն, հետևաբար, նույնպես համաչափ է CF-ի հետ, և BE-ն՝ DF-ի հետ [Տե՛ս "Տարրեր" 10.11]։

Եվ AE-ն և BE-ն ռացիոնալ (ուղիղ գծեր են, որոնք) համաչափ են միայն քառակուսիներով։ Այսպիսով, CF-ն և FD-ն նույնպես ռացիոնալ (ուղիղ գծեր են, որոնք) համաչափ են միայն քառակուսիներով [Տե՛ս "Տարրեր" 10.13]։ Ուստի, CD-ն ապոտոմե է։ Ասում եմ, որ այն նույնպես նույն կարգի է, ինչ AB-ն։

Ուստի, քանի որ ինչպես AE-ն է CF-ի նկատմամբ, այնպես էլ BE-ն է DF-ի նկատմամբ, ապա, այլընտրանքով, ինչպես AE-ն է EB-ի նկատմամբ, այնպես էլ CF-ն է FD-ի նկատմամբ [Տե՛ս "Տարրեր" 5.16]։ Այսպիսով, AE-ի վրա կառուցված քառակուսին մեծ է EB-ի վրա կառուցված քառակուսուց կամ որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը համաչափ է կամ անհամաչափ AE-ի հետ։

Ուստի, եթե AE-ի վրա կառուցված քառակուսին մեծ է EB-ի վրա կառուցված քառակուսուց որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը համաչափ է AE-ի հետ, ապա CF-ի վրա կառուցված քառակուսին նույնպես մեծ կլինի FD-ի վրա կառուցված քառակուսուց որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը համաչափ է CF-ի հետ [Տե՛ս "Տարրեր" 10.14]։ Եվ եթե AE-ն երկարությամբ համաչափ է նախապես տրված ռացիոնալ ուղիղ գծի հետ, ապա նույնը նաև CF-ն է [Տե՛ս "Տարրեր" 10.12]։ Եվ եթե BE-ն համաչափ է, ապա նաև DF-ը։ Եվ եթե ոչ AE-ն և ոչ էլ EB-ն համաչափ չեն, ապա նույնը նաև CF-ն և FD-ն [Տե՛ս "Տարրեր" 10.13]։

Եվ եթե AE-ի վրա կառուցված քառակուսին մեծ է EB-ի վրա կառուցված քառակուսուց որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը անհամաչափ է AE-ի հետ, ապա CF-ի վրա կառուցված քառակուսին նույնպես մեծ կլինի FD-ի վրա կառուցված քառակուսուց որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը անհամաչափ է CF-ի հետ [Տե՛ս "Տարրեր" 10.14]։ Եվ եթե AE-ն երկարությամբ համաչափ է նախապես տրված ռացիոնալ ուղիղ գծի հետ, ապա նույնը նաև CF-ն է [Տե՛ս "Տարրեր" 10.12]։ Եվ եթե BE-ն համաչափ է, ապա նաև DF-ը։ Եվ եթե ոչ AE-ն և ոչ էլ EB-ն համաչափ չեն, ապա նույնը նաև CF-ն և FD-ն [Տե՛ս "Տարրեր" 10.13]։

Ուստի, CD-ն ապոտոմե է և նույն կարգի է, ինչ AB-ն [Տե՛ս "Տարրեր" 10.11-10.16]։ Սա այն էր, ինչ անհրաժեշտ էր ապացուցել։