«Տարերք/Գիրք 8»–ի խմբագրումների տարբերություն

Գրապահարան-ից
Jump to navigation Jump to search
Content deleted Content added
No edit summary
No edit summary
 
(Միևնույն մասնակցի մեկ միջանկյալ տարբերակ թաքցված է)
Տող 14. Տող 14.
Եթե կա շարունակաբար համեմատվող թվերի որևէ խումբ, և այդ խմբի արտաքնապես թվերը միմյանց համապատասխան չեն, ապա այս թվերը կլինեն
Եթե կա շարունակաբար համեմատվող թվերի որևէ խումբ, և այդ խմբի արտաքնապես թվերը միմյանց համապատասխան չեն, ապա այս թվերը կլինեն
ամենափոքրները նրանց մեջ, որոնք նույն հարաբերությունն ունեն:
ամենափոքրները նրանց մեջ, որոնք նույն հարաբերությունն ունեն:
[[Պատկեր:Euclid Elements Book 8 Proposition 1.png|center|250px]]
[[Պատկեր:Euclid Elements Book 8 Proposition 1.png|center|350px]]
Թող A, B, C, D լինեն շարունակաբարհամեմատվող թվերի ցանկացած խումբ։ Եվ թող այդ խումբիարտաքնապես թվերը՝ A և D, միմյանց համապատասխան չեն: Ես ասում եմ, որ A,B, C, D-ը կլինեն ամենափոքրները նրանց մեջ, որոնք նույն հարաբերությունն ունեն։
Թող A, B, C, D լինեն շարունակաբարհամեմատվող թվերի ցանկացած խումբ։ Եվ թող այդ խումբիարտաքնապես թվերը՝ A և D, միմյանց համապատասխան չեն: Ես ասում եմ, որ A,B, C, D-ը կլինեն ամենափոքրները նրանց մեջ, որոնք նույն հարաբերությունն ունեն։


Տող 27. Տող 27.
Հարթ թվերը միմյանց նկատմամբ ունեն հարաբերություն, որը կազմված է իրենց կողմերի հարաբերություններից:
Հարթ թվերը միմյանց նկատմամբ ունեն հարաբերություն, որը կազմված է իրենց կողմերի հարաբերություններից:
Թող A և B լինեն հարթ թվեր, և թող C և D թվերը լինեն A-ի կողմերը, իսկ E և F (թվերը)՝ B-ի (կողմերը): Ասում եմ, որ A-ն ունի B-ի նկատմամբ հարաբերություն, որը կազմված է իրենց կողմերի հարաբերություններից:
Թող A և B լինեն հարթ թվեր, և թող C և D թվերը լինեն A-ի կողմերը, իսկ E և F (թվերը)՝ B-ի (կողմերը): Ասում եմ, որ A-ն ունի B-ի նկատմամբ հարաբերություն, որը կազմված է իրենց կողմերի հարաբերություններից:
[[Պատկեր:Euclid Elements Book 8 Proposition 2.png|center|250px]]
[[Պատկեր:Euclid Elements Book 8 Proposition 2.png|center|350px]]
Քանի որ տրված են հարաբերությունները, որոնցով C-ն ունի E-ի նկատմամբ, և D-ն (ունի) F-ի նկատմամբ, թող նվազագույն թվերը՝ G, H, K, շարունակաբար համեմատական լինեն CE, DF հարաբերություններում [Հիմք 8.4], այնպես, որ ինչպես C-ն E-ին է, այնպես էլ G-ն (լինի) H-ին, և ինչպես D-ն (լինի) F-ին, այնպես էլ H-ն (լինի) K-ին: Եվ թող D-ն ստեղծի L՝ E-ն բազմապատկելով:
Քանի որ տրված են հարաբերությունները, որոնցով C-ն ունի E-ի նկատմամբ, և D-ն (ունի) F-ի նկատմամբ, թող նվազագույն թվերը՝ G, H, K, շարունակաբար համեմատական լինեն CE, DF հարաբերություններում [Հիմք 8.4], այնպես, որ ինչպես C-ն E-ին է, այնպես էլ G-ն (լինի) H-ին, և ինչպես D-ն (լինի) F-ին, այնպես էլ H-ն (լինի) K-ին: Եվ թող D-ն ստեղծի L՝ E-ն բազմապատկելով:


Տող 49. Տող 49.


Այսպիսով, նմանապես, կարող ենք ցույց տալ, որ ոչ մի այլ (թիվ) չի կարող չափել որևէ այլ (թիվ): (Ինչը) հենց այն է, ինչ պահանջվում էր ցույց տալ:
Այսպիսով, նմանապես, կարող ենք ցույց տալ, որ ոչ մի այլ (թիվ) չի կարող չափել որևէ այլ (թիվ): (Ինչը) հենց այն է, ինչ պահանջվում էր ցույց տալ:

== Նշումներ ==
<references/>

Ընթացիկ տարբերակը 01:14, 14 դեկտեմբերի 2024-ի դրությամբ

Տարերք, Գիրք 8

հեղինակ՝ էվկլիդես
աղբյուր՝ Euclid's Elements of Geometry, English translation by Richard Fitzpatrick

Տարերքի գրքեր

Պնդում 1

Եթե կա շարունակաբար համեմատվող թվերի որևէ խումբ, և այդ խմբի արտաքնապես թվերը միմյանց համապատասխան չեն, ապա այս թվերը կլինեն ամենափոքրները նրանց մեջ, որոնք նույն հարաբերությունն ունեն:

Թող A, B, C, D լինեն շարունակաբարհամեմատվող թվերի ցանկացած խումբ։ Եվ թող այդ խումբիարտաքնապես թվերը՝ A և D, միմյանց համապատասխան չեն: Ես ասում եմ, որ A,B, C, D-ը կլինեն ամենափոքրները նրանց մեջ, որոնք նույն հարաբերությունն ունեն։

Եթե ոչ, թող E, F, G, H լինեն A, B, C, D-ից փոքր, լինելով նույն հարաբերության մեջ նրանց հետ։ Եվ քանի որ A, B, C, D-ը նույն հարաբերությունն ունեն E, F, G, H-ի հետ, ապա A, B, C, D-ի բազմապատկումը հավասար է E, F, G, H-ի բազմապատկմանը։ Հետևաբար, ըստ հավասարության, ինչպես A-ն՝ D-ին, այնպես էլ E-ն՝ H-ին, ուստի A և D թվերը միմյանց համապատասխան են, և դրանք միմյանց պնդեն։

Այսպիսով, A-ն չափում է E-ն՝ մեծը՝ փոքրին։ Սա անհնար է։ Հետևաբար, E, F, G, H թվերը չեն կարող նույն հարաբերությամբ լինել A, B, C, D-ի հետ։ A, B, C, D թվերը կլինեն ամենափոքրները նրանց մեջ, որոնք նույն հարաբերությունն ունեն։ Այսպիսով, մենք դա ապացուցեցինք։

Պնդում 2

Հարթ թվերը միմյանց նկատմամբ ունեն հարաբերություն, որը կազմված է իրենց կողմերի հարաբերություններից: Թող A և B լինեն հարթ թվեր, և թող C և D թվերը լինեն A-ի կողմերը, իսկ E և F (թվերը)՝ B-ի (կողմերը): Ասում եմ, որ A-ն ունի B-ի նկատմամբ հարաբերություն, որը կազմված է իրենց կողմերի հարաբերություններից:

Քանի որ տրված են հարաբերությունները, որոնցով C-ն ունի E-ի նկատմամբ, և D-ն (ունի) F-ի նկատմամբ, թող նվազագույն թվերը՝ G, H, K, շարունակաբար համեմատական լինեն CE, DF հարաբերություններում [Հիմք 8.4], այնպես, որ ինչպես C-ն E-ին է, այնպես էլ G-ն (լինի) H-ին, և ինչպես D-ն (լինի) F-ին, այնպես էլ H-ն (լինի) K-ին: Եվ թող D-ն ստեղծի L՝ E-ն բազմապատկելով:

Եվ քանի որ D-ն ստեղծել է A-ն՝ C-ն բազմապատկելով, և ստեղծել է L-ն՝ E-ն բազմապատկելով, ուրեմն, ինչպես C-ն E-ին է, այնպես էլ A-ն (լինում է) L-ին [Հիմք 7.17]: Եվ ինչպես C-ն (լինում է) E-ին, այնպես էլ G-ն (լինում է) H-ին: Ուստի, ինչպես G-ն (լինում է) H-ին, այնպես էլ A-ն (լինում է) L-ին:

Կրկին, քանի որ E-ն ստեղծել է L-ն՝ D-ն բազմապատկելով [Հիմք 7.16], բայց իրականում նաև ստեղծել է B-ն՝ F-ն բազմապատկելով, ուրեմն, ինչպես D-ն F-ին է, այնպես էլ L-ն (լինում է) B-ին [Հիմք 7.17]: Բայց ինչպես D-ն (լինում է) F-ին, այնպես էլ H-ն (լինում է) K-ին: Ուստի, ինչպես H-ն (լինում է) K-ին, այնպես էլ L-ն (լինում է) B-ին: Եվ արդեն ցույց էր տրվել, որ ինչպես G-ն (լինում է) H-ին, այնպես էլ A-ն (լինում է) L-ին:

Ուստի, հավասարության միջոցով, ինչպես G-ն K-ին է, այնպես էլ A-ն (լինում է) B-ին [Հիմք 7.14]: Եվ G-ն ունի K-ի նկատմամբ հարաբերություն, որը կազմված է կողմերի (A-ի և B-ի) հարաբերություններից: Ուստի, A-ն նույնպես ունի B-ի նկատմամբ հարաբերություն, որը կազմված է կողմերի (A-ի և B-ի) հարաբերություններից:

Պնդում 3

Եթե որևէ քանակությամբ շարունակաբար համեմատական թվեր կան, և առաջինը չի չափում երկրորդին, ապա ոչ մի այլ (թիվ) չի չափի որևէ այլ (թիվ):

Թող A, B, C, D, E լինեն ցանկացած քանակությամբ շարունակաբար համեմատական թվեր, և թող A-ն չչափի B-ին: Ասում եմ, որ ոչ մի այլ (թիվ) չի չափի որևէ այլ (թիվ):

Հիմա պարզ է, որ A, B, C, D, E-ն հաջորդաբար չեն չափում միմյանց: Քանի որ A-ն նույնիսկ չի չափում B-ին: Ուստի ասում եմ, որ ոչ մի այլ (թիվ) չի չափի որևէ այլ (թիվ):

Եթե հնարավոր է, թող A-ն չափի C-ին: Եվ որքան (թվեր) որ A, B, C-ն են, թող այդքան նվազագույն թվեր՝ F, G, H, ընտրված լինեն նրանցից (թվերից), որոնք ունեն նույն հարաբերությունը, ինչ A, B, C [Հիմք 7.33]: Եվ քանի որ F, G, H-ն ունեն նույն հարաբերությունը, ինչ A, B, C-ն, և A, B, C-ի քանակը հավասար է F, G, H-ի քանակին, ուրեմն, հավասարության միջոցով, ինչպես A-ն C-ին է, այնպես էլ F-ը (լինում է) H-ին [Հիմք 7.14]:

Եվ քանի որ ինչպես A-ն B-ին է, այնպես էլ F-ը (լինում է) G-ին, և A-ն չի չափում B-ին, ապա F-ը նույնպես չի չափում G-ին [Սահմանում 7.20]: Ուստի F-ը միավոր չէ: Քանի որ միավորը չափում է բոլոր թվերը: Եվ F-ն ու H-ն միմյանց նկատմամբ պարզ թվեր են [Հիմք 8.3], (և, հետևաբար, F-ը չի չափում H-ին): Եվ ինչպես F-ը H-ին է, այնպես էլ A-ն (լինում է) C-ին: Ուստի A-ն նույնպես չի չափում C-ին [Սահմանում 7.20]:

Այսպիսով, նմանապես, կարող ենք ցույց տալ, որ ոչ մի այլ (թիվ) չի կարող չափել որևէ այլ (թիվ): (Ինչը) հենց այն է, ինչ պահանջվում էր ցույց տալ:

Նշումներ