Changes
Քանի որ AB-ն և DE-ն C-ի և F-ի համապատասխանաբար հավասար բազմապատիկներ, հետևաբար այնքան մեծություններ որքան AB-ում հավասար են C-ին, այնքան էլ կան DE-ում հավասար F-ին։ Թող AB-ն բաժանված լինի մեծությունների ՝ AG, GH, HB հավասար C-ին և DE-ն, DK, KL, LE-ին հավասար F-ի։ Այսպիսով AG, GH, HB մեծությունների քանակը հավասար կլինի DK, KL, LE մեծությունների քանակին։ Եվ քանի որ AG, GH, HB-ն հավասար են իրար և DK, KL, LE-ն հավասար նույնպես հավասար են իրար։ Հետևաբար AG-ն հարաբերում է DK-ին ինչպես GH-ը KL-ին և HB-ն LE-ին [Պնդում]։ Եվ համաչափ մեծությունների համար, ինչպես առաջնային մեծություններից մեկը հարաբերում է իր հետևողին, այդպես էլ կհարաբերեն բոլոր մնացած առաջնային մեծությունները իրենց հետևողներին [Պնդում]։ ՀԵտևաբար AG-ն հարաբերում է DK-ին ինչպես AB—ն DE-ին։ Եվ AG-ն հավասար է C-ին և DK-ն F-ին։ Հետևաբար C-ն հարաբերում է F-ին ինչպես AB-ն DE-ին։
Այսպիսով մասերը ունեն նույն հարաբերությունը ինչպես նման բազմապատիկները, վերցված համապատասխանաբար հերթականությամբ։ Ինչը պետք էր ցույց տալ:
== Պնդում 16 ==
Եթե չորս մեծություններ համաչափ են, ապա նրանք նույնպես փոխադարձ կլինեն։ Թող A, B, C, D-ն լինեն չորս համաչափ մեծություններ, այնպես որ A-ն հարաբերում է B-ին ինչպես C-ն D-ին։ Ես ասում եմ որ նրանք նույնպես փոխադարձ համաչափ կլինեն, այնպես որ A-ն հարաբերում է C-ին ինչպես B-ն D-ին։
Թող հավասար բազմապատիկներ E-ն ու F-ը վերցված լինեն համապատասխաբար A-ից և B-ից, և ուրիշ պատահական G, H հավասար բազմապատիկներ համապատասխանաբար C-ից և D-ից։
screenshot #16
Եվ քանի որ E-ն ու F-ը համապատասխաբար A-ի և B-ի հավասար բազմապատիկներ են, և մասերը ունեն նույն հարաբերությունը ինչպես նման բազմապատիկները, վերցված համապատասխանաբար հերթականությամբ [Պնդում 5.15]։ Հետևաբար A-ն հարաբերում է B-ին ինչպես E-ն F-ին, բայց A-ն հարաբերում է B-ին ինչպես C-ն D-ին և հետևաբար C-ն հարաբերում է D-ին ինչպես E-ն F-ին [Պնդում 5.11]։ Կրկին Եվ քանի որ G-ն ու H-ը համապատասխաբար C-ի և D-ի հավասար բազմապատիկներ են, հետևաբար C-ն հարաբերում է D-ին ինչպես G-ն H-ին [Պնդում 5.15], բայց C-ն հարաբերում է D-ին ինչպես E-ն F-ին և հետևաբար E-ն հարաբերում է F-ին ինչպես G-ն H-ին [Պնդում 5.11]։ Եվ Եթե չորս մեծություններ համաչափ են և առաջին մեծությունը մեծ է երրորդից, ապա երկրորդ մեծությունը նույնպես մեծ կլինի չորրորդից։ Եվ եթե առաջին մեծությունը հավասար է երրորդին, ապա երկրորդ մեծությունը նույնպես հավասար կլինի չորրորդին։ Եվ եթե առաջին մեծությունը փոքր է երրորդից, ապա երկրորդ մեծությունը նույնպես փոքր կլինի չորրորդից
[Պնդում 5.14]։ Հետևաբար, եթե E-ն գերազանցում է G-ին, ապա F-ը նույնպես գերազանցում է H-ին, և եթե E-ն հավասար է G-ին, ապա F-ը նույնպես հավասար է H-ին, և եթե E-ն փոքր է G-ից, ապա F-ը նույնպես փոքր է H-ից: Եվ E-ն ու F-ը համապատասխանաբար A-ի և B-ի հավասար բազմապատիկներ են, և G-ն և H-ը C-ի և
D-ի համապատասխաբար ուրիշ պատահական հավասար բազմապատիկներ են։ Հետևաբար A-ն հարաբերում է C-ին ինչպես B-ն D-ին [Սահմանում 5.5]:
Այսպիսով եթե չորս մեծություններ համաչափ են, ապա նրանք նույնպես փոխադարձ կլինեն։ Ինչը պետք էր ցույց տալ:
== Պնդում 17 ==
Եթե համադրված մեծությունները համաչափ են, ապա նրանք նույնպես համաչափ կլինեն բաժանված։
screenshot #17
Թող AB-ն BE-ն CD-ն և DF-ը լինեն համադրված մեծություններ, որոնք համաչափ են, այնպես որ AB-ն հարաբերում է BE-ին, այնպես ինչպես CD-ին DF-ին։ Ես ասում եմ որ նրանք նույնպես համաչափ կլինեն բաժանված, այնպես որ AE-ն կհարաբերի EB-ին ինչպես CF-ը DF-ին։
Թող հավասար բազմապատիկներ GH, HK, LM և MN-ը վերցված լինեն համապատասխանաբար AE, EB, CF և FD—ից։ Եվ ուրիշ պատահական հավասար բազմապատիկներ KO և NP-ն համապատասխանաբար EB-ից և FD-ից։
Եվ քանի որ GH-ն ու HK-ն AE-ի և EB-ի համապատասխանաբար հավասար բազմապատիկներ են, հետևաբար GH-ն ու GK-ն AE-ի և AB-ի համապատասխանաբար հավասար բազմապատիկներ են [Պնդում 5.1]: Սակայն GH-ն և LM-ը AE-ի և CF-ի համապատասխանաբար հավասար բազմապատիկներ են, հետևաբար GK-ն ու LM-ը AB-ի և CF-ի համապատասխանաբար հավասար բազմապատիկներ են։ Կրկին, քանի որ LM-ը և
MN-ը CF-ի և FD-ի համապատասխանաբար հավասար բազմապատիկներ են, ապա LM-ը և
LM-ը CF-ի և CD-ի համապատասխանաբար հավասար բազմապատիկներ են [Պնդում 5.1]։
Եվ LM-ն ու GK-ն CF—ի և AB-ի համապատասխանաբար հավասար բազմապատիկներ են, հետևաբար GK-ն ու LN-ը AB-ի CD—ի համապատասխանաբար հավասար բազմապատիկներ են։ Դրա պատճառով GK-ն և LN-ը AB-ի և CD-ի հավասար բազմապատիկներ են։ Կրկին, քանի որ HK-ն և MN-ը EB-ի և FD-ի համապատասխանաբար հավասար բազմապատիկներ են և
KO-ն ու NP-ն EB-ի և FD-ի համապատասխանաբար հավասար բազմապատիկներ են, ապա գումարված իրար, HO-ն ու MP-ն նույնպես EB-ի և FD-ի համապատասխանաբար հավասար բազմապատիկներ են [Պնդում 5.2]։ Եվ քանի որ AB-ն հարաբերում է BE-ին այնպես ինչպես CD-ն DF-ին և հավասար բազմապատիկներ GK-ն ու LN-ը վերցված են եղել AB-ից ու CD-ից և հավասար բազմապատիկներ HO-ն ու MP-ն EB-ից և FD-ից, հետևաբար եթե GK-ն գերազանցում է HO-ին, ապա LN-ը նույնպես գերազանցում է
MP-ին, և եթե GK-ն հավասար է HO-ին, ապա LN-ը նույնպես հավասար է MP-ին, և եթե GK-ն փոքր է HO-ից, ապա LN-ը նույնպես փոքր է MP-ից [Սահմանում 5.5]։ Թող GK-ն գերազանցի HO-ին հետևաբար հանելով HK-ն երկուսից էլ GH-ն կգերազանցի
KO-ին։ Բայց մենք տեսել ենք որ եթե GK-ն գերազանցում է HO-ին , ապա LN-ը նույնպես գերազանցում է MP-ին։ Հետևաբար LN-ը նույնպես գերազանցում է MP-ին և MN-ը երկուսից էլ հանենք LM-ը նույնպես կգերազանցի NP-ին։ ՀԵտևաբար եթե GH-ը գերազանցում է KO-ին, ապա LM-ը նույնպես կգերազանցի NP-ին։ Հանգունորեն մենք կարեղ ենք ցույց տալ որ եթե GH-ը հավասար է KO-ին ապա LM-ը նույնպես հավասար է NP-ին և եթե GH-ը փոքր է KO-ից, ապա LM-ը նույնպես փոքր է NP-ից։ Եվ GH-ն ու LM-ը AE-ի և CF-ի հավասար բազմապատիկներ են և KO-ն ու NP—ն ուրիշ պատահական EB-ի և FD-ի հավասար բազմապատիկներ են։ ՀԵտևաբար, AE-ն հարաբերում է EB-ին ինչպես CF-ը FD-ին [Սահմանում 5.5]։
Այսպիսով Եթե համադրված մեծությունները համաչափ են, ապա նրանք նույնպես համաչափ կլինեն բաժանված։ Ինչը պետք էր ցույց տալ:
== Պնդում 18 ==
Եթե բաժանված մեծությունները համաչափ են, ապա նրանք նույնպես համաչափ կլինեն համադրված։
screenshot #18
Թող AE-ն, EB-ն, CF-ը և FD-ն լինեն բաժանված մեծություններ որոնք համաչափ են, այնպես որ AE-ն հարաբերում է EB-ին ինչպես CF-ը FD-ին։ Ես ասում եմ որ նրանք նույնպես համաչափ կլինեն համադրված, այսինքն AB-ն կհարաբերի BE-ին ինչպես
CD-ն FD-ին։
Հակառակ դեպքւմ եթե AB-ն չի հարաբերում BE-ին ինչպես CD-ն FD-ին, ապա այդ դեպքում AB-ն կհարաբերի BE-ին, այնպես ինչպես որ CD-ն որևէ մեծ կամ փոքր մեծության քան DF-ը։
Թող առաջինը այդ մեծությունը լինի փոքր քան DF-ը և կոչվի DG։ Եվ քանի որ համադրված մեծությունները համաչափ են, այնպես որ AB-ն հարաբերում է BE-ին ինչպես CD-ն DG-ին, ապա նրանք նույնպես կլինեն համաչափ բաժանված
[Պնդում 5.17]: ՀԵտևաբար AE-ն հարաբերում է EB-ին CG-ն GD-ին, բայց մենք նույնպես ենթադրել էինք որ AE-ն հարաբերում է EB-ին ինչպես CF-ը FD-ին [Պնդում 5.11]։ Եվ առաջին մեծություն CG-ն մեծ է քան երրորդ CF-ը։
Հետևաբար, երկրորդ մեծություն GD-ն նույնպես մեծ է չորրորդ FD-ից
[Պնդում 5.14]։ Բայց նա նույնպես փոքր է, ինչը անհնար է։ Հետևաբար սա այն դեպքը չէ, երբ AB-ն հարաբերում է BE-ին ինչպես CD-ն FD-ից փոքրին։ Հանգունորեն մենք կարող ենք ցույց տալ նաև որ սա FD-ից մեծ դեպքը չէ։ Հետևաբար, սա հավասար FD-ին դեպքն է։
Հետևաբար, եթե բաժանված մեծությունները համաչափ են, ապա նրանք նույնպես համաչափ կլինեն համադրված։ Ինչը պետք էր ցույց տալ:
== Պնդում 19 ==
Եթե ամբողջ մասը հարաբերում է ամբողջ մասին ինչպես վերցված մասը վերցված մասին, ապա մնացորդը կհարաբերի մնացորդին ինչպես ամբողջ մասը ամբողջին։
screenshot #19
Թող ամբողջ մաս AB-ն հարաբերի ամբողջ մաս CD ինչպես վերցված մաս AE-ն CF վերցված մասին։ Ես ասում եմ որ, EB մնացորդը կհարաբերի CD մնացորդին ինչպես ամբողջ մաս AB-ն CD ամբողջին։
Քանի որ AB-ն հարաբերում է CD-ին ինչպես AE-ն CF-ին, նույնպես փոխադարձ BA-ն հարաբերում Է AE-ին ինչպես DC-ն CF-ին [Պնդում 5.16]։ Եվ քանի որ եթե համադրված մեծությունները համաչափ են, ապա նրանք նույնպես համաչափ կլինեն բաժանված, ապա BE-ն հարաբերում է EA—ին ինչպես DF-ը CF-ին [Պնդում 5.17]։
Նույնպես հակադարձ BE-ն հարաբերում է DF-ին ինչպես EA-ն FC-ին [Պնդում 5.16]։
Եվ ենթադրվում էր, որ AE-ն հարաբերում էր CF-ին ինչպես ամբողջ AB-ն CD-ին։
Հետևաբար, EB մնացորդը հարաբերում է FD մնացորդին, ինչպես ամբողջ AB-ն կհարաբերի ամբողջ CD-ին։
Այսպիսով՝ եթե ամբողջ մասը հարաբերում է ամբողջ մասին ինչպես վերցված մասը վերցված մասին, ապա մնացորդը կհարաբերի մնացորդին ինչպես ամբողջ մասը ամբողջին։ Ինչը պետք էր ցույց տալ:
Եվ քանի որ ցույց տրված եղել էր որ AB-ն հարաբերում է CD-ին ինչպես EB-ն
FD-ին, Սա նույնպես այն դեպքն է հակադարձ, որ AB-ն հարաբերում է BE-ին ինչպես CD-ն FD-ին։ Հետևաբար համադրված մեծությունները համաչափ են։ Եվ ցույց տրված եղել է որ BA-ն հարաբերում է AE-ին ինչպես DC-ն CF-ին։ Եվ վերջինս ստացվել է առաջինից։
== Հետևանք ==
Այսպիսով այստեղից պարզ է, որ եթե համադրված մեծությունները համաչափ են, ապա նրանք նույնպես համաչափ կլինեն ձևափոխված։ Ինչը պետք էր ցույց տալ:
== Պնդում 20 ==
Եթե կան երեք մեծություններ և ուրիշ մեծություններ նրանց հավասար թվով, նաև նրանց հարաբաերությունները զույգ առ զույգ վերցված հավասար են, և եթե հավասարման միջոցով առաջինը մեծ է երրորդից, ապա չորրորդը նույնպես մեծ կլինի վեցերորդից, և եթե առաջինը հավասար է երրորդին, ապա չորրորդը նույնպես հավասար կլինի վեցերորդին, և եթե առաջինը փոքր է երրորդից, ապա չորրորդը նույնպես փոքր կլինի վեցերորդից։
Screenshot #20
Թող A, B, C-ն լինեն երեք մեծություններ և D, E, F-ը ուրիշ մեծություններ նրանց թվով հավասար և նույնպես զույգ առ զույգ վերցված հավասար հարաբերություններով, այնպես որ A-ն հարաբերում է B-ին ինչպես D-ն E-ին, և
B-ն C-ին, ինչպես E-ն F-ին։ Եվ թող A-ն մեծ լինի C-ից ըստ հավասարության։ Ես ասում եմ որ D-ն նույնպես մեծ կլինի F-ից, և եթե A-ն հավասար է C-ին, ապա D-ն նույնպես հավասար կլինի F-ին։ Եվ եթե A-ն փոքր է C-ից, ապա D-ն նույնպես փոքր կլինի F-ից։
Քանի որ A-ն մեծ է C-ից և B-ն մեկ ուրիշ մեծություն է, և մեծ մեծությունը ունի ավելի մեծ հարաբերություն քան փոքրը նույն հարաբերությանը [Պնդում 5.8], հետևաբար A-ն ունի ավելի մեծ հարաբերություն B-ին քան C-ն B-ին։ Բայց A-ն հարաբերում է B-ին, ինչպես D-ն E-ին։ Եվ հակադարձորեն C-ն հարաբերում է B-ին այնպես ինչպես F-ը E-ին [Պնդում 5.7-ի հետևանք]։
Հետևաբար D-ն նույնպես ունի ավելի մեծ հարաբերություն E-ին քան F-ը E-ին [Պնդում 5.13]։ Եվ մեծությունները ունեն հարաբերություն նույն մեծությանը, այն մեծությունը որը ունի մեծ հարաբերություն մեծն է [Պնդում 5.10]։ Հետևաբար D-ն մեծ է F-ից։ Հանգունորեն մենք կարոզ ենք ցույց տալ, որ եթե նույնիսկ A-ն հավասար է C-ին ապա D-ն նույնպես հավասար կլինի F-ին և նույնիսկ եթե A-ն փոքր է C-ից, ապա D-ն նույնպես փոքր կլինի քան F-ը։
Այսպիսով՝ եթե կան երեք մեծություններ և ուրիշ մեծություններ նրանց հավասար թվով, նաև նրանց հարաբաերությունները զույգ առ զույգ վերցված հավասար են, և եթե հավասարման միջոցով առաջինը մեծ է երրորդից, ապա չորրորդը նույնպես մեծ կլինի վեցերորդից, և եթե հավասարման միջոցով առաջինը հավասար է երրորդին, ապա չորրորդը նույնպես հավասար կլինի վեցերորդին, և եթե առաջինը փոքր է երրորդից, ապա չորրորդը նույնպես փոքր կլինի վեցերորդից։ Ինչը պետք էր ցույց տալ:
== Պնդում 21 ==
Եթե կան երեք մեծություններ և ուրիշ մեծություններ նրանց հավասար թվով, նաև նրանց հարաբաերությունները զույգ առ զույգ վերցված հավասար են, և եթե նրանց հարաբերությունը խանգառված է, և եթե հավասարման միջոցով առաջինը մեծ է երրորդից, ապա չորրորդը նույնպես մեծ կլինի վեցերորդից, և եթե առաջինը հավասար է երրորդին, ապա չորրորդը նույնպես հավասար կլինի վեցերորդին, և եթե առաջինը փոքր է երրորդից, ապա չորրորդը նույնպես փոքր կլինի վեցերորդից։
screenshot #21
ող A, B, C-ն լինեն երեք մեծություններ և D, E, F-ը ուրիշ մեծություններ նրանց թվով հավասար և նույնպես զույգ առ զույգ վերցված հավասար հարաբերություններով, և խանգառված հարաբերությամբ, այնպես որ A-ն հարաբերում է B-ին ինչպես Ե-ն Ֆ-ին, և
B-ն C-ին, ինչպես Դ-ն Ե-ին։ Եվ թող A-ն մեծ լինի C-ից ըստ հավասարության։ Ես ասում եմ որ D-ն նույնպես մեծ կլինի F-ից, և եթե A-ն հավասար է C-ին, ապա D-ն նույնպես հավասար կլինի F-ին։ Եվ եթե A-ն փոքր է C-ից, ապա D-ն նույնպես փոքր կլինի F-ից։
Քանի որ A-ն մեծ է C-ից և B-ն մեկ ուրիշ մեծություն է, հետևաբար A-ն ունի ավելի մեծ հարաբերություն B-ին քան C-ն B-ին [Պնդում 5.8]։ Բայց A-ն հարաբերում է B-ին, ինչպես Ե-ն Ֆ-ին։ Եվ հակադարձորեն C-ն հարաբերում է B-ին այնպես ինչպես Ե-ը Դ-ին [Պնդում 5.7-ի հետևանք]։ Հետևաբար Ե-ն նույնպես ունի ավելի մեծ հարաբերություն Ֆ-ին քան Ե-ը Դ-ին [Պնդում 5.13]։ Եվ մեծությունները ունեն հարաբերություն նույն մեծությանը, այն մեծությունը որը ունի մեծ հարաբերություն մեծն է [Պնդում 5.10]։ Հետևաբար Ֆ-ը փոքր է Դ-ից։ Հետևաբար Դ-ն մեծ է Ֆ-ից։ Հանգունորեն մենք կարոզ ենք ցույց տալ, որ եթե նույնիսկ A-ն հավասար է C-ին ապա D-ն նույնպես հավասար կլինի F-ին և նույնիսկ եթե A-ն փոքր է C-ից, ապա D-ն նույնպես փոքր կլինի քան F-ը։
Այսպիսով՝ եթե կան երեք մեծություններ և ուրիշ մեծություններ նրանց հավասար թվով, նաև նրանց հարաբաերությունները զույգ առ զույգ վերցված հավասար են, և եթե նրանց հարաբերությունը խանգառված է, և եթե հավասարման միջոցով առաջինը մեծ է երրորդից, ապա չորրորդը նույնպես մեծ կլինի վեցերորդից, և եթե հավասարման միջոցով առաջինը հավասար է երրորդին, ապա չորրորդը նույնպես հավասար կլինի վեցերորդին, և եթե առաջինը փոքր է երրորդից, ապա չորրորդը նույնպես փոքր կլինի վեցերորդից։ Ինչը պետք էր ցույց տալ:
== Պնդում 22 ==
Եթե կան որևէ քանակի մեծություններ և ուրիշ նրանց քանակով հավասար մեծություններ, որոնք զույգ առ զույգ վերցված ունեն նույն հարաբերությունը, ապա նրանք նույնպես կլինեն նույն հարաբերության ըստ հավասարման։
screenshot #22
Թող լինեն կամայական քանակի մեծություններ A, B, C և ուրիծ մեծություններ D, E, F նրանց քանակով հավասար, որոնք զույգ առ զույգ վերցված նույն հարաբերությունը ունեն այնպես որ A-ն հարաբերում է B-ին ինչպես D-ն E-ին և
B-ն C-ին ինչպես E-ն F-ին։ Ես ասում եմ որ նրանք նույն հարաբերության կլինեն հավսարման միջոցով։ Այսինքն A-ն կհարաբերի C-ին ինչպես D-ն F-ին։
Թող հավասար բազմապատիկներ G-ն և H-ը համապատասխանաբար վերցված լինեն A-ից և D-ից, և ուրիշ պատահական հավասար բազմապատիկներ K-ն ու L-ը համապատասխանաբար B-ից և E-ից, և դեռ ուրիշ պատահական հավասար բազմապատիկներ M-ն ու N-ը համապատասխանաբար C-ից և F-ից։
Եվ քանի որ A-ն հարաբերում է B-ին ինչպես D-ն E-ին և հավասար բազմապատիկներ G-ն և H-ը համապատասխանաբար վերցված են A-ից և D-ից և ուրիշ պատահական հավասար բազմապատիկներ K-ն ու L-ը համապատասխանաբար B-ից և E-ից, ապա G-ն հարաբերում է K-ին ինչպես H-ը L-ին [Պնդում 5.4]։ Եվ քանի որ նույն պատճառով K-ն հարաբերում է M-ին ինչպես L-ը N-ին։ Հետևաբար, քանի որ G, K, M-ը երեք մեծություն են և H, L, N-ը ուրիշ մեծություններ նրանց քանակով հավասար, որոնք նույնպես նույն հարաբերությունը ունեն զույգ առ զույգ վերցված, հետևաբար հավասարման միջոցով եթե G-ն գերազանցում է M-ին, ապա H-ը նույնպես գերազանցում է N-ին, և եթե G-ն հավասար է M-ին, ապա H-ը նույնպես հավասար է N-ին, և եթե G-ն փոքր է M-ից, ապա H-ը նույնպես փոքր է N-ից [Պնդում 5.20]։
Եվ G-ն ու H-ը համապատասխանաբար A-ի և D-ի հավասար բազմապատիկներ են, M-ն ու N-ը համապատասխանաբար C-ի և F-ի ուրիշ հավասար բազմապատիկներ են։ Հետևաբար,
A-ն հարաբերում է C-ին ինչպես D-ն F-ին [Սահմանում 5.5]։
Այսպիսով՝ եթե կան որևէ քանակի մեծություններ և ուրիշ նրանց քանակով հավասար մեծություններ, որոնք զույգ առ զույգ վերցված ունեն նույն հարաբերությունը, ապա նրանք նույնպես կլինեն նույն հարաբերության ըստ հավասարման։ Ինչը պետք էր ցույց տալ:
== Պնդում 23 ==
screenshot #23