«Տարերք/Գիրք 2»–ի խմբագրումների տարբերություն

Գրապահարան-ից
(Պնդում 7†)
(Պնդում 7†)
Տող 34. Տող 34.
 
Կառուցենք ADEB քառակուսին՝ AB կողմով սահմանված։ Կառուցենք նաև գծագրի մնացած մասը։
 
Կառուցենք ADEB քառակուսին՝ AB կողմով սահմանված։ Կառուցենք նաև գծագրի մնացած մասը։
 
AG և GE անկյունագծերով ուղղանկյունները հավասար են, երկուսին էլ կցենք CF անկյունագծով քառակուսին։ Արդյունքում AF և CE անկյունագծերով ուղղանկյունները հավասար կլինեն։ Հետևաբար, AF և CE անկյունագծերով ուղղանկյունների գումարը հավասար է AF անկյունագծով ուղղանկյան կրկնապատիկին։ Սակայն AF և CE անկյունագծերով ուղղանկյունների գումարը KLM գնոմոնն է և CF անկյունագծով քառակուսին։ Հետևաբար, KLM գնոմոնը և CF անկյունագծով քառակուսին AF անկյունագծով ուղղանկյան կրկնապատիկն են կազմում։ Մինչդեռ AF անկյունագծով ուղղանկյան կրկնապատիկը նաև AB և BC կողմերով կառուցված ուղղանկյան կրկնապատիկին է հավասար։ BF-ն ու BC-ն հավասար են։ Հետևում է, որ KLM գնոմոնն ու CF քառակուսին հավասար են AB և BC կողմորով կառուված ուղղանկյան կրկնապատիկին։ Երկու կողմերին էլ ավելացնենք DG անկյունագծով քառակուսին։ Արդյունքում՝ KLM գնոմոնն ու BG և GD անկյունագծերով քառակուսիները հավասար են AB և BC կողմերով կառուցաված ուղղանկյանն ու AC անկյունագծովո քառակուսուն։ Բայց KLM գնոմոնն ու BG և GD քառակուսիները հավասարարժեք են ողջ ADEB-ին և CF-ին, որոնք AB և BC քառակուսիներն են։ Հետևաբար, AB և BC քառակուսիների գումարը հավասար է AB և BC կողմերով կազմված քառակուսու կրկնապատիկին և AC քառակուսուն։
 
AG և GE անկյունագծերով ուղղանկյունները հավասար են, երկուսին էլ կցենք CF անկյունագծով քառակուսին։ Արդյունքում AF և CE անկյունագծերով ուղղանկյունները հավասար կլինեն։ Հետևաբար, AF և CE անկյունագծերով ուղղանկյունների գումարը հավասար է AF անկյունագծով ուղղանկյան կրկնապատիկին։ Սակայն AF և CE անկյունագծերով ուղղանկյունների գումարը KLM գնոմոնն է և CF անկյունագծով քառակուսին։ Հետևաբար, KLM գնոմոնը և CF անկյունագծով քառակուսին AF անկյունագծով ուղղանկյան կրկնապատիկն են կազմում։ Մինչդեռ AF անկյունագծով ուղղանկյան կրկնապատիկը նաև AB և BC կողմերով կառուցված ուղղանկյան կրկնապատիկին է հավասար։ BF-ն ու BC-ն հավասար են։ Հետևում է, որ KLM գնոմոնն ու CF քառակուսին հավասար են AB և BC կողմորով կառուված ուղղանկյան կրկնապատիկին։ Երկու կողմերին էլ ավելացնենք DG անկյունագծով քառակուսին։ Արդյունքում՝ KLM գնոմոնն ու BG և GD անկյունագծերով քառակուսիները հավասար են AB և BC կողմերով կառուցաված ուղղանկյանն ու AC անկյունագծովո քառակուսուն։ Բայց KLM գնոմոնն ու BG և GD քառակուսիները հավասարարժեք են ողջ ADEB-ին և CF-ին, որոնք AB և BC քառակուսիներն են։ Հետևաբար, AB և BC քառակուսիների գումարը հավասար է AB և BC կողմերով կազմված քառակուսու կրկնապատիկին և AC քառակուսուն։
Այսպիսով՝ հատվածը կամայական կետում հատելիս՝ ստացված հատվածներից պատահականորեն ընտրված մեկի և ողջ հատվածի քառակուսիների գումարը հավասար է ողջ և նախապես ընտրված հատվածներով կառուցված ուղղանկյան մակերեսի կրկնապատիկի և հատման արդյունքում առաջացած մյուս հատվածի երկարության քառակուսու գումարին։
+
Այսպիսով՝ հատվածը կամայական կետում հատելիս՝ ստացված հատվածներից պատահականորեն ընտրված մեկի և ողջ հատվածի քառակուսիների գումարը հավասար է ողջ և նախապես ընտրված հատվածներով կառուցված ուղղանկյան մակերեսի կրկնապատիկի և հատման արդյունքում առաջացած մյուս հատվածի երկարության քառակուսու գումարին։
  
 
† Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ (a + b) ^2 + a^2 = 2(a + b)a + b^2:
 
† Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ (a + b) ^2 + a^2 = 2(a + b)a + b^2:

23:49, 4 Դեկտեմբերի 2024-ի տարբերակ

Pages 49-55

Սահմանումներ

1. Ցանկացած ուղղանկյուն զուգահեռագիծ համարվում է սահմանափակված ուղիղ անկյուն կազմող երկու ուղիղ գծերով։

2. Ցանկացած զուգահեռագիծ պատկերում նրա անկյունագծի շուրջ (վերցված) ցանկացած զուգահեռագիծ իր երկու լրացումների հետ միասին կոչվում է գնոմոն։

Պնդում 1

Պնդում 2

Պնդում 3

Պնդում 4

Պնդում 5

Pages 56-68

Պնդում 6†

Հետևաբար, քանի որ AC-Ն և CB-Ն հավասար են, AL և CH անկյունագծերով ուղղանկյունները նույնպես հավասար են [Պնդում 1.36]։ CH անկյունագծով ուղղանկյունն էլ հավասար է HF անկյունագծովին [Պնդում 1.43], որից հետևում է, որ AL անկյունագծով ուղղանկյունը հավասար է HF անկյունագծովին։ Երկու կողմերին էլ ավելացնենք CM անկյունագծով ուղղանկյունը։ Կստացվի, որ AM անկյունագծով ուղղանկյունը և NOP գնոմոնը հավասար են։ Իսկ AM անկյունածով ուղղանկյունը կարող ենք կառուցել AD և DB կողմերով։ DM-ն ու DB-ն նույնպես հավասար են, հետևաբար NOP գնոմոնը հավասար է AD-ով և DB-ով կառուցված ուղղանկյանը։ Երկու կողմին էլ ավելացնենք LG անկյունագծով քառակուսին, որը հավասար է BC հիմքով քառակուսուն։ Այսպիսով՝ AD և DB կողմերով ուղղանկյան և CB հիմքով քառակուսու գումարը հավասար է NOP գնոմոնի և LG անկյունագծով քառակուսու գումարին։ Սակայն NOP գնոմոնն ու LG անկյունագծով քառակուսին համարժեք են ողջ CEFD-ին, որը ընկած է CD-ի վրա։ Հետևում է, որ AD-ով և DB-ով կառուցված ուղղանկյան և CB հիմքով քառակուսու գումարը հավասար է CD հիմքով քառակուսուն։ Հետևաբար, հատվածը կիսելու և դրան ուղիղ գծով այլ հատված կցելու արդյունքում՝ ստացված ողջ հատվածով և ավելացված մասով կառուցված ուղղանկյան և հատվածի կեսով կառուցված քառակուսու գումարը հավասար է նախնական հատվածի կեսի և կցված հատվածի գումարով ստացված նոր հատվածով կառուցված քառակուսուն։

† Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ (2a + b) b + a^2 = (a + b)^2։

Պնդում 7†

Հատվածը կամայական կետում հատելիս՝ ստացված հատվածներից պատահականորեն ընտրված մեկի և ողջ հատվածի քառակուսիների գումարը հավասար է ողջ և նախապես ընտրված հատվածներով կառուցված ուղղանկյան մակերեսի կրկնապատիկի և հատման արդյունքում առաջացած մյուս հատվածի երկարության քառակուսու գումարին։

էջ 56․

Տրված AB հատվածը հատենք C կետում: AB և BC հատվածների քառակուսիների գումարը հավասար է AB և BC հատվածներով որոշված ուղղանկյան մակերեսի կրկնապատիկի և CA կողմով քառակուսու մակերեսի գումարին։ Կառուցենք ADEB քառակուսին՝ AB կողմով սահմանված։ Կառուցենք նաև գծագրի մնացած մասը։ AG և GE անկյունագծերով ուղղանկյունները հավասար են, երկուսին էլ կցենք CF անկյունագծով քառակուսին։ Արդյունքում AF և CE անկյունագծերով ուղղանկյունները հավասար կլինեն։ Հետևաբար, AF և CE անկյունագծերով ուղղանկյունների գումարը հավասար է AF անկյունագծով ուղղանկյան կրկնապատիկին։ Սակայն AF և CE անկյունագծերով ուղղանկյունների գումարը KLM գնոմոնն է և CF անկյունագծով քառակուսին։ Հետևաբար, KLM գնոմոնը և CF անկյունագծով քառակուսին AF անկյունագծով ուղղանկյան կրկնապատիկն են կազմում։ Մինչդեռ AF անկյունագծով ուղղանկյան կրկնապատիկը նաև AB և BC կողմերով կառուցված ուղղանկյան կրկնապատիկին է հավասար։ BF-ն ու BC-ն հավասար են։ Հետևում է, որ KLM գնոմոնն ու CF քառակուսին հավասար են AB և BC կողմորով կառուված ուղղանկյան կրկնապատիկին։ Երկու կողմերին էլ ավելացնենք DG անկյունագծով քառակուսին։ Արդյունքում՝ KLM գնոմոնն ու BG և GD անկյունագծերով քառակուսիները հավասար են AB և BC կողմերով կառուցաված ուղղանկյանն ու AC անկյունագծովո քառակուսուն։ Բայց KLM գնոմոնն ու BG և GD քառակուսիները հավասարարժեք են ողջ ADEB-ին և CF-ին, որոնք AB և BC քառակուսիներն են։ Հետևաբար, AB և BC քառակուսիների գումարը հավասար է AB և BC կողմերով կազմված քառակուսու կրկնապատիկին և AC քառակուսուն։ Այսպիսով՝ հատվածը կամայական կետում հատելիս՝ ստացված հատվածներից պատահականորեն ընտրված մեկի և ողջ հատվածի քառակուսիների գումարը հավասար է ողջ և նախապես ընտրված հատվածներով կառուցված ուղղանկյան մակերեսի կրկնապատիկի և հատման արդյունքում առաջացած մյուս հատվածի երկարության քառակուսու գումարին։

† Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ (a + b) ^2 + a^2 = 2(a + b)a + b^2: