«Տարերք/Գիրք 1»–ի խմբագրումների տարբերություն

Գրապահարան-ից
(Պնդում 28)
(Պնդում 28)
Տող 19. Տող 19.
 
== Պնդում 28 ==
 
== Պնդում 28 ==
  
 +
Եթե երկու ուղիղները հատող ուղիղը կազմում է արտաքին անկյուն, որը հավասար է ներքին և հակադիր անկյանը նույն կողմի վրա կամ նույն կողմի վրա գտնվող անկյունների գումարը հավասարեցնում է երկու ուղիղ անկյունների, ապա այդ երկու ուղիղները զուգահեռ են։
  
 
[[Պատկեր:ElementsBook1-Propostion28.png|center|200px]]
 
[[Պատկեր:ElementsBook1-Propostion28.png|center|200px]]
 +
 +
EF ուղիղը, որը հատում է AB և CD ուղիղները, կազմում է EGB արտաքին անկյուն, որը հավասար է ներքին և հակադիր GHD անկյանը, կամ նույն կողմի վրա գտնվող BGH և GHD անկյունների գումարը հավասարեցնում է երկու ուղիղ անկյունների։ Պնդումն այն է, որ AB և CD ուղիղները զուգահեռ են։
  
 
== Պնդում 29 ==
 
== Պնդում 29 ==

20:59, 11 Դեկտեմբերի 2024-ի տարբերակ

Տարերք, Գիրք 1

հեղինակ՝ էվկլիդես
աղբյուր՝ Euclid's Elements of Geometry, English translation by Richard Fitzpatrick

Տարերքի գրքեր

Pages 6-30

Պնդում 27

Դա անհնար է [Պնդում 1.16]: Հետևաբար AB և CD ուղիղները՝ գծվելով, չեն հատվի B և D ուղղությամբ։ Նմանապես, կարող ենք ցույց տալ, որ դրանք չեն հատվի A և C ուղղություններվ։ Բայց ուղիղները, որոնք չեն հատվում ոչ մի ուղղությամբ, զուգահեռ են [Սահմանում 1.23]: Հետևաբար, AB և CD ուղիղները զուգահեռ են։ Հետևաբար, եթե երկու ուղիղներ հատող ուղիղը ստեղծում է հավասար խաչադիր անկյուններ, ապա այդ երկու ուղիղները զուգահեռ են։ Սա այն էր, ինչ պետք էր ապացուցել։

Pages 31-48

Պնդում 28

Եթե երկու ուղիղները հատող ուղիղը կազմում է արտաքին անկյուն, որը հավասար է ներքին և հակադիր անկյանը նույն կողմի վրա կամ նույն կողմի վրա գտնվող անկյունների գումարը հավասարեցնում է երկու ուղիղ անկյունների, ապա այդ երկու ուղիղները զուգահեռ են։

ElementsBook1-Propostion28.png

EF ուղիղը, որը հատում է AB և CD ուղիղները, կազմում է EGB արտաքին անկյուն, որը հավասար է ներքին և հակադիր GHD անկյանը, կամ նույն կողմի վրա գտնվող BGH և GHD անկյունների գումարը հավասարեցնում է երկու ուղիղ անկյունների։ Պնդումն այն է, որ AB և CD ուղիղները զուգահեռ են։

Պնդում 29

Պնդում 30

Պնդում 31

Պնդում 32

Պնդում 33

Պնդում 34

Պնդում 35

Պնդում 36

Պնդում 37

Պնդում 38

Պնդում 39

Պնդում 40

Պնդում 41

Պնդում 42

Պնդում 43

Պնդում 44

Պնդում 45

Պնդում 46

Պնդում 47

Պնդում 48