«Տարերք/Գիրք 1»–ի խմբագրումների տարբերություն

Գրապահարան-ից
(Սահմանումներ)
(Պնդում 1)
Տող 67. Տող 67.
 
Անհրաժեշտ է կառուցել հավասարակողմ եռանկյուն այդ AB ուղիղ գծի վրա:
 
Անհրաժեշտ է կառուցել հավասարակողմ եռանկյուն այդ AB ուղիղ գծի վրա:
  
Թող գծվի BCD շրջանը՝ կենտրոն A-ով և AB շառավղով [Հոդված 3], և կրկին թող գծվի ACE շրջանը՝ կենտրոն B-ով և BA շառավղով [Հոդված 3]: Եվ թող գծվեն CA և CB ուղիղ գծերը, որտեղ շրջանակները հատվում են միմյանց, դեպի A և B կետերը (համապատասխանաբար) [Հոդված 1]:
+
Թող գծվի BCD շրջանը՝ կենտրոն A-ով և AB շառավղով [Աքսիոմա 3], և կրկին թող գծվի ACE շրջանը՝ կենտրոն B-ով և BA շառավղով [Աքսիոմա 3]: Եվ թող գծվեն CA և CB ուղիղ գծերը, որտեղ շրջանակները հատվում են միմյանց, դեպի A և B կետերը (համապատասխանաբար) [Աքսիոմա 1]:
  
 
Քանի որ A կետը CDB շրջանի կենտրոնն է, AC հավասար է AB-ին [Սահմանում 1.15]: Կրկին, քանի որ B կետը CAE շրջանի կենտրոնն է, BC հավասար է BA-ին [Սահմանում 1.15]: Սակայն, նաև ցույց է տրվել, որ CA հավասար է AB-ին: Այսպիսով, CA-ն և CB-ն երկուսն էլ հավասար են AB-ին: Իսկ այն բաները, որոնք հավասար են նույն բանին, նույնպես հավասար են միմյանց [Համընդհանուր սկզբունք 1]: Այսպիսով, CA-ն հավասար է նաև CB-ին: Այսպիսով, երեք (ուղիղ գծերը) CA, AB և BC հավասար են միմյանց:
 
Քանի որ A կետը CDB շրջանի կենտրոնն է, AC հավասար է AB-ին [Սահմանում 1.15]: Կրկին, քանի որ B կետը CAE շրջանի կենտրոնն է, BC հավասար է BA-ին [Սահմանում 1.15]: Սակայն, նաև ցույց է տրվել, որ CA հավասար է AB-ին: Այսպիսով, CA-ն և CB-ն երկուսն էլ հավասար են AB-ին: Իսկ այն բաները, որոնք հավասար են նույն բանին, նույնպես հավասար են միմյանց [Համընդհանուր սկզբունք 1]: Այսպիսով, CA-ն հավասար է նաև CB-ին: Այսպիսով, երեք (ուղիղ գծերը) CA, AB և BC հավասար են միմյանց:
  
 
Այսպիսով, ABC եռանկյունը հավասարակողմ է և կառուցված է տրված AB սահմանափակ ուղիղ գծի վրա: Դա հենց այն էր, ինչ անհրաժեշտ էր անել:
 
Այսպիսով, ABC եռանկյունը հավասարակողմ է և կառուցված է տրված AB սահմանափակ ուղիղ գծի վրա: Դա հենց այն էր, ինչ անհրաժեշտ էր անել:
 
 
 
  
 
== Պնդում 2 ==
 
== Պնդում 2 ==

00:58, 13 Դեկտեմբերի 2024-ի տարբերակ

Տարերք, Գիրք 1

հեղինակ՝ էվկլիդես
աղբյուր՝ Euclid's Elements of Geometry, English translation by Richard Fitzpatrick

Տարերքի գրքեր

Pages 6-30

Սահմանումներ

  1. Կետը այն է, որում չկան մասեր։
  2. Գիծը երկարությունն է առանց լայնությաան։
  3. Գծի եզրերը կետեր են։
  4. Ուղիղ գիծը դա այն գիծն է, որն ուղիղ անցնում է այդ կետերով։
  5. Հարթոոթյուն է երկարություն և լայնություն ունեցող պատկերը։
  6. Հարթության եզրերը գծերն են։
  7. Հարթ մակերեսը այդ գծերի միջև համաչափ բաշխված է։
  8. Հարթության անկյունը գծերի փոխադարձ հակվածությունն է, երբ հարթությունում երկու գիծ հանդիպում են միմյանց և չեն գտնվում միևնույն ուղիղ գծի վրա:
  9. Երբ անկյուն պարունակող գծերը ուղղահայաց են, այդ անկյունը կոչվում է ուղղանկյուն:
  10. Երբ մի ուղիղ գծերը հատում են իրար, և առաջացնում է հարակից անկյուններ, որոնք հավասար են միմյանց, այդ հավասար անկյուններից յուրաքանչյուրը կոչվում է ուղիղ անկյուն, իսկ առաջին ուղիղ գիծը կոչվում է ուղղահայաց այն գծին, որին հատում է:
  11. Բութ անկյունն ավելի մեծ է, քան ուղիղ անկյունը։
  12. Սուր անկյունն ավելի փոքր է, քան ուղիղ անկյունը։
  13. Սահմանը դա ինչ-որ բանի եզրերն են։
  14. Պատկերը պարունակում է որոշակի սահմաններ։
  15. Շրջանագիծը հարթության մի պատկեր է, որը պարփակված է մի գծով (որը կոչվում է շրջագիծ), այնպես, որ բոլոր ուղիղ գծերը, որոնք ուղղվում են դեպի շրջագիծը, ելնելով այդ պատկերի ներսում գտնվող մի կետից, հավասար են միմյանց:
  16. Այդ կետը կենտրոնն է։
  17. Շրջանի տրամագիծը ցանկացած ուղիղ գիծ է, որը անցնում է կենտրոնով և ավարտվում է երկու ուղղություններով շրջագծի սահմաններում: Այդպիսի ցանկացած գիծ նաև կիսում է շրջանը երկու հավասար մասերի:
  18. Կիսաշրջանը այն պատկերն է, որը պարփակված է տրամագծով և շրջագծով, որն այդ տրամագիծն առանձնացնում է: Եվ կիսաշրջանի կենտրոնը նույն կետն է, ինչ շրջանի կենտրոնը:
  19. Ուղղագծային պատկերները (ֆիգուրները) այն պատկերներն են, որոնք պարփակված են ուղիղ գծերով. եռակողմ պատկերները պարփակված են երեք ուղիղ գծերով, քառակողմերը՝ չորս, և բազմակողմերը՝ ավելի քան չորս:
  20. Եռակողմ պատկերներից՝ հավասարակողմ եռանկյունը այն է, որն ունի երեք հավասար կողմ, հավասարասրուն եռանկյունը՝ այն, որն ունի միայն երկու հավասար կողմ, իսկ անհավասարասրուն եռանկյունը՝ այն, որն ունի երեք անհավասար կողմ:
  21. Եռակողմ պատկերների շարքում՝ ուղղանկյուն եռանկյունը այն է, որն ունի ուղիղ անկյուն, բութանկյուն եռանկյունը՝ այն, որն ունի բութ անկյուն, իսկ սուրանկյուն եռանկյունը՝ այն, որն ունի երեք սուր անկյուն:
  22. Քառակողմ պատկերների շարքում՝ քառակուսին այն պատկերն է, որը ուղիղանկյուն է և հավասարակողմ, ուղղանկյունը՝ այն, որը ուղիղանկյուն է, բայց ոչ հավասարակողմ, հնգանկյունը՝ այն, որը հավասարակողմ է, բայց ոչ ուղիղանկյուն, իսկ շեղանկյունը՝ այն, որի հակադիր կողմերն ու անկյունները հավասար են միմյանց, բայց այն ոչ ուղիղանկյուն է և ոչ էլ հավասարակողմ: Եվ թող քառակողմ պատկերները, որոնք այս դասերին չեն պատկանում, կոչվեն թրապեզիաներ:
  23. Զուգահեռ գծերը ուղիղ գծեր են, որոնք գտնվում են նույն հարթության մեջ և, անվերջ շարունակվելով երկու ուղղությամբ, չեն հատվում միմյանց ոչ մի ուղղությամբ:

Աքսիոմաներ

  1. Կարելի է գծել ուղիղ գիծ ցանկացած կետից դեպի ցանկացած կետ:
  2. Կարելի է շարունակել սահմանափակ ուղիղ գիծը անվերջ միևնույն ուղիղ գծի վրա:
  3. Կարելի է գծել շրջան ցանկացած կենտրոնով և շառավղով:
  4. Բոլոր ուղիղ անկյուններն հավասար են իրար։
  5. Եթե ուղիղ գիծը հատում է երկու (այլ) ուղիղ գծերը և ստեղծում ներքին անկյուններ նույն կողմում (որոնց գումարը) փոքր է երկու ուղիղ անկյուններից, ապա այդ երկու (այլ) ուղիղ գծերը, շարունակվելով անվերջ, հանդիպում են այն կողմում (որն ունի փոքր անկյունների գումար), և չեն հանդիպում մյուս կողմում:


Ընդհանուր հասկացություններ

  1. Եթե մի քանի բան հավասար են մեկ այլ բանի, ապա այդ մի քանի բաներն իրար էլ են հավասար։
  2. Եթե հավասար բաներին ավելացնենք հավասար բաներ, ապա ամբողջները հավասար կլինեն:
  3. Եթե հավասար բաներից հանենք հավասար բաներ, ապա մնացորդները հավասար կլինեն:[1]
  4. Իրար համընկող բաներն իրար հավասար են:
  5. Ամբողջը ավելի մեծ է, քան դրա մի մասը:

Պնդում 1

Կառուցենք հավասարակողմ եռանկյուն, տրված վերջավոր ուղիղ գծի վրա։

Euclids Elements book1 proposition1.jpg

Թող AB-ն լինի տրված սահմանափակ ուղիղ գիծը:

Անհրաժեշտ է կառուցել հավասարակողմ եռանկյուն այդ AB ուղիղ գծի վրա:

Թող գծվի BCD շրջանը՝ կենտրոն A-ով և AB շառավղով [Աքսիոմա 3], և կրկին թող գծվի ACE շրջանը՝ կենտրոն B-ով և BA շառավղով [Աքսիոմա 3]: Եվ թող գծվեն CA և CB ուղիղ գծերը, որտեղ շրջանակները հատվում են միմյանց, դեպի A և B կետերը (համապատասխանաբար) [Աքսիոմա 1]:

Քանի որ A կետը CDB շրջանի կենտրոնն է, AC հավասար է AB-ին [Սահմանում 1.15]: Կրկին, քանի որ B կետը CAE շրջանի կենտրոնն է, BC հավասար է BA-ին [Սահմանում 1.15]: Սակայն, նաև ցույց է տրվել, որ CA հավասար է AB-ին: Այսպիսով, CA-ն և CB-ն երկուսն էլ հավասար են AB-ին: Իսկ այն բաները, որոնք հավասար են նույն բանին, նույնպես հավասար են միմյանց [Համընդհանուր սկզբունք 1]: Այսպիսով, CA-ն հավասար է նաև CB-ին: Այսպիսով, երեք (ուղիղ գծերը) CA, AB և BC հավասար են միմյանց:

Այսպիսով, ABC եռանկյունը հավասարակողմ է և կառուցված է տրված AB սահմանափակ ուղիղ գծի վրա: Դա հենց այն էր, ինչ անհրաժեշտ էր անել:

Պնդում 2

Պնդում 3

Պնդում 4

Պնդում 5

Պնդում 6

Պնդում 7

Պնդում 8

Պնդում 9

Պնդում 10

Պնդում 11

Պնդում 12

Պնդում 13

Պնդում 14

Պնդում 15

Պնդում 16

Պնդում 17

Պնդում 18

Պնդում 19

Պնդում 20

Պնդում 21

Պնդում 22

Պնդում 23

Պնդում 24

Պնդում 25

Պնդում 26

Պնդում 27

Դա անհնար է [Պնդում 1.16]: Հետևաբար AB և CD ուղիղները՝ գծվելով, չեն հատվի B և D ուղղությամբ։ Նմանապես, կարող ենք ցույց տալ, որ դրանք չեն հատվի A և C ուղղություններվ։ Բայց ուղիղները, որոնք չեն հատվում ոչ մի ուղղությամբ, զուգահեռ են [Սահմանում 1.23]: Հետևաբար, AB և CD ուղիղները զուգահեռ են։ Հետևաբար, եթե երկու ուղիղներ հատող ուղիղը ստեղծում է հավասար խաչադիր անկյուններ, ապա այդ երկու ուղիղները զուգահեռ են։ Սա այն էր, ինչ պետք էր ապացուցել։

Pages 31-48

Պնդում 28

Եթե երկու ուղիղները հատող ուղիղը կազմում է արտաքին անկյուն, որը հավասար է ներքին և հակադիր անկյանը նույն կողմի վրա կամ նույն կողմի վրա գտնվող անկյունների գումարը հավասարեցնում է երկու ուղիղ անկյունների, ապա այդ երկու ուղիղները զուգահեռ են։

ElementsBook1-Propostion28.png

EF ուղիղը, որը հատում է AB և CD ուղիղները, կազմում է EGB արտաքին անկյուն, որը հավասար է ներքին և հակադիր GHD անկյանը, կամ նույն կողմի վրա գտնվող BGH և GHD անկյունների գումարը հավասարեցնում է երկու ուղիղ անկյունների։ Պնդումն այն է, որ AB և CD ուղիղները զուգահեռ են։

Առաջին դեպքում EGB անկյունը հավասար է GHD անկյանը, բայց EGB անկյունը նաև հավասար է AGH անկյանը [Պնդում 1.15], հետևաբար, AGH անկյունը հավասար է GHD անկյանը։ Դրանք նաև խաչադիր անկյուններ են։ Հետևաբար, AB և CD ուղիղները զուգահեռ են [Պնդում. 1.27]։

Երկրորդ դեպքում, կրկին, BGH և GHD անկյունների գումարը հավասար է երկու ուղիղ անկյունների, ինչպես նաև AGH և BGH անկյունների գումարն է հավասար երկու ուղիղ անկյունների [Պնդում 1.13]։ Հետևաբար, AGH և BGH անկյունների գումարը հավասար է BGH և GHD անկյունների գումարին։ Երկուսից էլ հանենք BGH անկյունը։ Հետևաբար, մնացորդ AGH անկյունը հավասար է մնացորդ GHD անկյանը և դրանք խաչադիր անկյուններ են։ Հետևաբար, AB և CD ուղիղները զուգահեռ են [Պնդում 1.27]։

Հետևաբար, եթե երկու ուղիղները հատող ուղիղը կազմում է արտաքին անկյուն, որը հավասար է ներքին և հակադիր անկյանը նույն կողմի վրա կամ նույն կողմի վրա գտնվող անկյունների գումարը հավասարեցնում է երկու ուղիղ անկյունների, ապա այդ երկու ուղիղները զուգահեռ են։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 29

Զուգահեռ ուղիղները հատող ուղղիղը ստեղծում է հավասար խաչադիր անկյուններ, արտաքին անկյուն՝ հավասար ներքին և հակադիր անկյանը, և նույն կողմի վրա գտնվող ներքին անկյունների գումարը հավասարվում է երկու ուղիղ անկյունների։

ElementsBook1-Propostion28.png

EF ուղիղը հատում է զուգահեռ AB և CD ուղիղները։ Պնդումն այն է, որ այն դարձնում է AGH և GHD անկյունները հավասար, EGB արտաքին անկյունը՝ հավասար ներքին և հակադիր GHD անկյանը, և նույն կողմի վրա գտնվող BGH և GHD ներքին անկյունների գումարը՝ հավասար երկու ուղիղ անկյունների։

Եթե AGH անկյունը հավասար չէ GHD անկյանը, ապա նրանցից մեկը մեծ է։ Ենթադրենք AGH անկյունը մեծ է։ Երկու անկյուններին ավելացնենք BGH անկյունը։ Հետևաբար, AGH և BGH անկյունների գումարը մեծ է BGH և GHD անկյունների գումարից։ Բայց, AGH և BGH անկյունների գումարը հավասար է երկու ուղիղ անկյունների [Պնդում 1.13]։ Հետևաբար, BGH և GHD անկյունների գումարը փոքր է երկու ուղիղ անկյուններից։ Բայց, ուղիղները գծված են անվերջ ներքին անկյուններից, որոնց գումարը փոքր է հատվող երկու ուղիղ անկյուններից [Կանխադրույթ 5]: Հետևաբար, անվերջ գծված AB և CD ուղիղները կհատվեն։ Բայց, նրանք չեն հատվում, եթե հաշվի առնենք, որ իսկզբանե դրանք զուգահեռ էին [Սահմանում 1.23]։ Հետևաբար, AGH և GHD անկյունները չեն կարող հավասար չլինել՝ հավասար են։ Բայց, AGH և EGB անկյունները նույնպես հավասար են [Պնդում 1.15]։ EGB անկյունը, հետևաբար, հավասար է GHD անկյանը։ Երկուսին էլ ավելացնենք BGH անկյունը։ Հետևաբար, EGB և BGH անկյունների գումարը հավասար է BGH և GHD անկյունների գումարին։ Բայց, EGB և BGH անկյունների գումարը հավասար է երկու ուղիղ անկյունների [Պնդում 1.13]։ Հետևաբար, BGH և GHD անկյունների գումարը նույնպես հավասար է երկու ուղիղ անկյունների։

Հետևաբար, զուգահեռ ուղիղները հատող ուղղիղը ստեղծում է հավասար հակադիր անկյուններ, արտաքին անկյուն՝ հավասար ներքին և հակադիր անկյանը, և նույն կողմի վրա գտնվող ներքին անկյունների գումարը հավասարվում է երկու ուղիղ անկյունների։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 30

Նույն ուղղին զուգահեռ ուղիղները նաև զուգահեռ են միմյանց։

ElementsBook1-Propostion30.png

AB և CD ուղիղներից յուրաքանչյուրը զուգահեռ է EF ուղղին։

Պնդումն այն է, որ AB և CD ուղիղները նույնպես զուգահեռ են։ GK ուղիղը հատում է AB, CD և EF ուղիղները։

Քանի որ GK ուղիղը հատում է EB և EF զուգահեռ ուղիղները, AGK անկյունը, հետևաբար, հավասար է GHF անկյանը [Պնդում 1.29]։ Կրկին, քնաի որ GK ուղիղը հատում է EF և CD զուգահեռ ուղիղները, GHF անկյունը հավասար է GKD անկյանը [Պնդում 1.29]։ Բայց ցույց տրվեց, որ AGK անկյունը հավասար է GHF անկյանը։ Հետևաբար, AGK անկյունը հավասար է GKD անկյանը և դրանք խաչադիր անկյուններ են։ Հետևաբար, AB ուղիղը զուգահեռ է CD ուղղին [Պնդում 1.27]։

Հետևաբար, նույն ուղղին զուգահեռ ուղիղները նաև զուգահեռ են միմյանց։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 31

Գծել ուղիղ, զուգահեռ տրված ուղղին, որը կանցնի տրված կետով։

A-ն տրված կետն է և BC-ն տրված ուղիղը։ Պահանջվում է գծել ուղիղ, որը զուգահեռ կլինի BC ուղղին և կանցնի A կետով։

BC ուղղի վրա վերցնենք պատահական D կետ և գծենք AD հատավծը։

ADC անկյանը հավասար DAE անկյունը կառուցված է DA ուղղի վրա՝ A կետում [Պնդում 1.23]։ AF ուղիղը կառուցված է EA ուղղի վրա։

ElementsBook1-Propostion31.png

Քանի որ AD ուղիղը՝ հատելով BC և EF ուղիղները, ստեղծում է խաչադիր EAD և ADC անկյունները, EAF ուղիղը հավասար է BC ուղղին [Պնդում 1.27]:

Հետևաբար, EAF ուղիղը գծված է զուգահեռ տրված BC ուղղին և անցնում է տրված A կետով։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 32

Եթե ցանկացած եռանկյան կողմերից մեկը ընդարձակենք, ապա արտաքին անկյունը հավասար կլինի երկու ներքին և հակադիր անկյունների գումարին, իսկ երեք ներքին անկյունների գումարը հավասար կլինի երկու ուղիղ անկյունների։

ElementsBook1-Propostion32.png

ABC-ն եռանկյուն է և նրա կողմերից մեկին՝ BC-ին, ավելացված է D հատվածը։ Պնդումն այն է, որ ACD արտաքին անկյունը հավասար է երկու ներքին և հակադիր անկյուններ CAB-ի և ABC-ի գումարին և եռանկյան երեք ներքին անկյունների՝ ABC, BCA, և CAB, գումարը հավասար է երկու ուղիղ անկյան։

AB ուղղին զուգահեռ գծված է CE ուղիղը, որն անցնում է C կետով [Պնդում 1.31]։

Քանի որ AB և CE հատվածները զուգահեռ են, BAC և ACE խաչադիր անկյունները իրար հավասար են [Պնդում 1.29]։ Կրկին, քանի որ AB և CE ուղիղները զուգահեռ են և BD ուղիղը հատում է դրանք ECD արտաքին անկյունը հավասար է ABC ներքին և հակադիր անկյանը [Պնդում 1.29]։ Բայց, ցույց է տրված, որ ACE անկյունը հավասար է BAC անկյանը։ Հետևաբար, ACD անկյունը ամբողջությամբ հավասար է երկու ներքին և հակադիր անկյունների՝ BAC-ի և ABC-ի, գումրին։

Երկու անկյուններին ավելացնենք ACB անկյունը։ Հետևաբար, ACD և ACB անկյուննեի գումարը հավասար է երեք անկյուններ ABC, BCA, և CAB-ի գումարին։ Բայց, ACD և ACB անկյունների գումարը հավասար է երկու ուղիղ անկյունների [Պնդում 1.13]։ Հետևաբար, ACB, CBA և CAB անկյունների գումարը նույնպես հավասար է երկու ուղիղ անկյան։

Հետևաբար, եթե ցանկացած եռանկյան կողմերից մեկը ընդարձակենք, ապա արտաքին անկյունը հավասար կլինի երկու ներքին և հակադիր անկյունների գումարին, իսկ երեք ներքին անկյունների գումարը հավասար կլինի երկու ուղիղ անկյունների։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 33

Ուղիղները, որոնք միացնում են հավասար և զուգահեռ ուղիղներ նույն կողմի վրա, նույնպես հավասար են և զուգահեռ։

ElementsBook1-Propostion33.png

AB և CD ուղիղները հավասար են և զուգահեռ, իսկ AC և BD ուղիղները միացնում են դրանք նույն կողմի վրա։ Պնդումն այն է, որ AC և BD ուղիղները նույնպես հավասար են և զուգահեռ։

Գծված է BC անկյունագիծը։ Քանի որ AB-ն զուդահեռ է CD-ին և BC-ն հատում է դրանք, ABC և BCD խաչադիր անկյունները հավասար են միմյանց [Պնդում 1.29]։ Քանի որ AB-ն հավասար է CD-ին և BC-ն ընդհանուր է, AB և BC ուղիղները հացվասար են DC և CB ուղիղներին։ Նաև ABC անկյունը հավասար է BCD անկյանը։ Հետևաբար, AC հիմքը հավասար է BD հիմքին և ABC եռանկյունը հավասար է BCD եռանկյանը։ Մյուս անկյունները նույնպես հավասար կլինեն համապատասխան անկյուններին, որոնք հենվում են հավասար կեղմերի վրա [Պնդում 1.4]։ Հետևաբար, ACB անկյունը հավասար է CBD անկյանը։ Նաև, քանի որ BC ուղիղը, որը հատում է AC և BD ուղիղները, կազմում է խաչադիր և հավասար ACB և CBD անկյունները, AC ուղիղը, հետևաբար, հավասար է BD ուղղին [Պնդում 1.27]։ Նաև ցույց է տրված, որ AC ուղիղը հավասար է BD ուղղին:

Հետևաբար, ուղիղները, որոնք միացնում են հավասար և զուգահեռ ուղիղներ նույն կողմի վրա, նույնպես հավասար են և զուգահեռ։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 34

Զուգահեռագիծ պատկերներում հակառակ կողմերն ու անկյունները հավասար են միմյանց, իսկ անկյունագիծը կիսում է դրանք հավասար մասերի:

ElementsBook1-Propostion34.png

ACDB-ն զուգահեռագիծ պատկեր է և BC-ն դրա անկյունագիծն է։ Պնդումն այն է, որ ACDB զուգահեռագծում հակադիր կողմերը և անկյունները հավասար են միմյանց և BC անկյունագիծը կիսում է այն հավասար մասերի։

Քանի որ AB ուղիղը զուգահեռ է CD ուղղին և BC ուղիղը հատում է դրանք, խաչադիր ABC և BCD անկյունները հավասար են միմյանց [Պնդում 1.29]։ Կրկին, քանի որ AC և BD ուղիղները զուգահեռ են և BC ուղիղը հատում է դրանք, խաչադիր ACB և CBD անկյունները հավասար են միմյանց [Պնդում 1.29]։

Այսպիսով, ABC-ն և BCD-ն երկու եռանկյուններ են, որոնց համապատասխան ABC և BCA ու BCD և CBD անկյունները համապատասխանաբար հավասար են միմյանց և նրանց մի կողմը՝ հավասար անկյուններով, ընդհանուր է։ Դա BC կողմն է։ Հետևաբար, դրանց համապատասխան կողմերը նունյպես հավասար են և երրորդ անկյունը նույնպես համապատասխանաբար հավասար է [Պնդում 1.26]։ Հետևաբար, AB կողմը հավասար է CD կողմին և AC կողմը հավասար է BD կողմին։ Ավելին, BAC անկյունը հավասար է CDB անկյանը։ Քանի որ ABC անկյունը հավասար է BCD անկյանը և CBD անկյունը հավասար է ACB անկյանը, ամբողջ ABD անկյունը, հետևաբար, հավասար է ամբողջ ACD անկյանը։ Ցույց է տրված նաև, որ BAC-ն հավասար է CDB-ին։

Հետևաբար, զուգահեռագիծ պատկերում հակադիր կողմերը և անկյունները հավասար են միմյանց։

Նաև պնդումն այն է, որ անկյունագիծը կիսում է այն երկու հավասար մասի։ Քանի որ AB կողմը հավասար է CD կողմին և BC-ն ընդհանուր է AB և BC ուղիղները, համապատասխանաբար, հավասար են DC և CB ուղիղներին։ Նաև ABC անկյունը հավասար է BCD անկյանը։ Հետևաբար, AC հիմքը նույնպես հավասար է DB-ին և ABC եռանկյունը հավասար է BCD եռանկյանը [Պնդում 1.4]։

Հետևաբար, BC անկյունագիծը կիսում է ACDB զուգահեռագիծը երկու հավասար մասի։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 35

Նույն հիմքով և նույն զուգահեռ ուղիղների միջև կառուցված զուգահեռագծերը հավասար [2] են միմյանց։

ElementsBook1-Propostion35.png

Նույն BC հիմքով ABCD և EBCF զուգահեռագծերը կառուցված են AF և BC զուգահեռ ուղիղների միջև։ Պնդումն այն է, որ ABCD և EBCF զուգահեռագծերը հավասար են։

Քանի որ ABCD-ն զուգահեռագիծ է AD-ն հավասար է BC-ին [Պնդում 1.34]։ Նույն պատճառով EF-ը հավասար է BC-ին։ Հետևաբար, ամբողջ AE ուղիղը հավասար է ամբողջ DF ուղղին։ AB-ն նույնպես հավասար է DC-ին։ Այսպիսով EA և AB ուղիղները համապատասխանաբար հավասար են FDև DC ուղիղներին։ Իսկ FDC անկյունը հավասար է EAB անկյանը՝ արտաքինը ներքինին [Պնդում 1.29]: Հետևաբար EB հիմքը հավասար է FC հիմքին և EAB եռանկյունին հավասար է DFC եռանկյունուն [Պնդում 1.4]: Երկուսից էլ հանենք DGE-ն։ Հետևաբար, հավելյալ ABGD սեղանը հավասար է հավելյալ EGCF սեղանին։ Երկուսին էլ ավելացնենք GBC եռանկյունը։ Հետևաբար, ամբողջ ABCD զուգահեռագիծը հավասար է ամբողջ EBCF զուգահեռագծին։

Հետևաբար, նույն հիմքով և նույն զուգահեռ ուղիղների միջև կառուցված զուգահեռագծերը հավասար։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 36

Հավասար հիմքով և նույն զուգահեռ ուղիղների միջև կառուցված զուգահեռագծերը հավասար են միմյանց։

ABCD-ն և EFGH-ն զուգահեռագծեր են, որոնք կառուցված են հավասար BC և FG հիմքերով և AH և BG նույն զուգահեռ ուղիղների միջև։ Պնդումն այն է, որ ABCD և EFGH զուգահեռագծերը հավասար են։

ElementsBook1-Propostion36.png

Գծված են BE և CH ուղիղները։ Քանի որ BC-n հավասար է FG-ին և FG-ն էլ հավասար է EH-ին [Պնդում 1.34], հետևաբար, BC-ն հավասար է EH-ին։ Նրանք նաև զուգահեռ են և EB ու HC ուղիղները միացնում են դրանք։ Բայց ուղիղները, որոնք միացնում են հավասար և զուգահեռ ուղիղներ նույն կողմի վրա, իրենք էլ հավասար են և զուգահեռ [Պնդում 1.33] (հետևաբար EB-ն և HC-ն նույնպես հավասար են և զուգահեռ)։ Հետևաբար, EBCH-ը զուգահեռագիծ է [Պնդում 1.34] և հավասար է ABCD-ին: Այն ունի նույն BC հիմքը, այնպես ինչպես ABCD-ն և գտնվում է նույն BC և AH զուգահեռների միջև, այնպես ինչպես ABCD-ն [Պնդում 1.35]։ Նույն պատճառով EFGH-ն հավասար է նույն EBCH զուգահեռագծին [Պնդում 1.34]։ Այսպիսով, ABCD զուգահեռագիծը հավասար է EFGH զուգահեռագծին։

Հետևաբար, հավասար հիմքով և նույն զուգահեռ ուղիղների միջև կառուցված զուգահեռագծերը հավասար են միմյանց։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 37

Նույն հիմքով և նույն զուգահեռ ուղիղների միջև կառուցված եռանկյունները հավասար են միմյանց։

ElementsBook1-Propostion37.png

ABC և DBC եռանկյունները կառուցված են նույն BC հիմքով և նույն AD և BC զուգահեռ ուղիղների միջև։ Պնդումն այն է, որ ABC եռանկյունը հավասար է DBC եռանկյանը։

AD-ն ձգված է E և F ուղղություններով և B կետով գծված է BE ուղիղը, զուգահեռ CA-ին [Պնդում 1.31]։ Նաև C կետով գծված է CF ուղիղը, զուգահեռ BD-ին [Պնդում 1.31]։ Հետևաբար, EBCA-ն և DBCF-ն զուգահեռագծեր են և հավասար են։ Դրանք նույն BC հիմքի վրա են և գտնվում են նույն BC և EF զուգահեռ ուղիղների միջև [Պնդում 1.35]։ ABC եռանկյունը EBCA զուգահեռագծի կեսն է։ AB անկյունագիծը կիսում է վերջինս երկու մասի [Պնդում 1.34]։ DBC եռանկյունը DBCF զուգահեռագծի կեսն է։ DC անկյունագիծը կիսում է վերջինս երկու մասի [Պնդում 1.34] (հավասար պատկերների կեսերը հավասար են միմյանց)։ Հետևաբար, ABC եռանկյունը հավասար է DBC եռանկյանը։

Հետևաբար, նույն հիմքով և նույն զուգահեռ ուղիղների միջև կառուցված եռանկյունները հավասար են միմյանց։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 38

Հավասար հիմքով և նույն զուգահեռ ուղիղների միջև կառուցված եռանկյունները հավասար են միմյանց։

ElementsBook1-Propostion38.png

ABC և DEF եռանկյունները կառուցված են հավասար BC և EF հիմքերով և նույն BF և AD զուգահեռ ուղիղների միջև։ Պնդումն այն է, որ ABC եռանկյունը հավասար է DEF եռանկյանը։

AD-ն ձգված է G և H ուղղություններով և B կետով գծված է BG ուղիղը, զուգահեռ CA-ին [Պնդում 1.31]: Նաև F կետով գծված է FH ուղիղը, զուգահեռ DE-ին [Պնդում 1.31]։ Հետևաբար, GBCA-ն և DEFH-ն զուգահեռագծեր են և հավասար են։ Դրանք հավասար BC և EF հիմքերի վրա են և գտնվում են նույն BF և GH զուգահեռ ուղիղների միջև [Պնդում 1.36]։ ABC եռանկյունը GBCA զուգահեռագծի կեսն է։ AB անկյունագիծը կիսում է վերջինս երկու մասի [Պնդում 1.34]։ FED եռանկյունը DEFH զուգահեռագծի կեսն է։ DF անկյունագիծը կիսում է վերջինս երկու մասի (հավասար պատկերների կեսերը հավասար են միմյանց)։ Հետևաբար, ABC եռանկյունը հավասար է DEF եռանկյանը։

Հետևաբար, հավասար հիմքով և նույն զուգահեռ ուղիղների միջև կառուցված եռանկյունները հավասար են միմյանց։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 39

Հավասար եռանկյունները, որոնք նույն հիմքի և նույն կողմի վրա են կառուցված, նաև գտնվում են նույն զուգահեռների միջև։

ABC-ն և DBC-ն նույն BC հիմքի նույն կողմում կառուցված եռանկյուններ են։ Պնդումն այն է, որ դրանք նաև նույն զուգահեռների միջև են։

ElementsBook1-Propostion39.png

Գծված է AD կողմը։ Պնդումն այն է, որ AD-ն և BC-ն զուգահեռ են։

Հակառակ դեպքում, A կետով գծված է AE ուղիղը, որը զուգահեռ է BC ուղղին [Պնդում 1.31] և գծված է EC կողմը։ Հետևաբար, ABC եռանկյունը հավասար է EBC եռանկյանը։ Վերջինս նույն BC հիմքի վրա է և նույն զուգահեռների միջև է [Պնդում 1.37]։ Բայց ABC-ն հավասար է DBC-ին։ Հետևաբար, DBC-ն նաև հավասար է EBC-ին, մեծը՝ փոքրին, ինչը անհնար է։ Հետևաբար AE-ն զուգահեռ չէ BC-ին։ Նմանապես, կարող ենք ցույց տալ, որ BC-ն, ոչ մի այլ ուղղի քան AD-ն, զուգահեռ չէ։ Հետևաբար, AD-ն զուգահեռ է BC-ին։

Հետևաբար, հավասար եռանկյունները, որոնք նույն հիմքի և նույն կողմի վրա են կառուցված, նաև գտնվում են նույն զուգահեռների միջև։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 40 [3]

Հավասար հիմքի նույն կողմում կառուցված հավասար եռանկյունները նաև նույն զուգահեռների միջև են։

ElementsBook1-Propostion40.png

ABC-ն և CDE-ն համապատասխանաբար BC և CE հավասար հիմքերի նույն կողմում կառուցված հավասար եռանկյուններ են։ Պնդումն այն է, որ դրանք նաև նույն զուգահեռների միջև են։

Գծված է AD կողմը։ Պնդում այն է, որ AD-ն զուգահեռ է BE-ին։

Հակառակ դեպքում, A կետով գծված է AF ուղիղը, որը զուգահեռ է BE-ին [Պնդում 1.31] և գծված է FE կողմը։ Հետևաբար, ABC եռանկյունը հավասար է FCE եռանկյանը։ Դրանք հավասար BC և CE հիմքերի վրա են կառուցված և նույն BE և AF զուգահեռների միջև են [Պնդում 1.38]։ Բայց, ABC եռանկյունը հավասար է DCE եռանկյանը։ Հետևաբար, DCE-ն նաև հավասար է FCE-ին, մեծը՝ փոքրին, ինչը անհնար է։ Հետևաբար AF-ը զուգահեռ չէ BE-ին։ Նմանապես, կարող ենք ցույց տալ, որ BE-ն, ոչ մի այլ ուղղի քան AD-ն, զուգահեռ չէ։ Հետևաբար, AD-ն զուգահեռ է BE-ին։

Հետևաբար, հավասար հիմքի նույն կողմում կառուցված հավասար եռանկյունները նաև նույն զուգահեռների միջև են։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 41

Եթե զուգահեռագիծը և եռանկյունը ունեն նույն հիմքը և նույն զուգահեռների միջև են, ապա զուգահեռագծի մակերեսը եռանկյան մակերեսի կրկնապատիկն է։

ElementsBook1-Propostion41.png

ABCD զուգահեռագիծը և EBC եռանկյունը ունեն նույն BC հիմքը և գտնվում են նույն BC և AE զուգահեռների միջև։ Պնդումն այն է, որ ABCD-ի մակերեսը BEC-ի մակերեսի կրկնապատիկն է։

Միացված է AC հատվածը։ Այսպիսով, ABC եռանկյունը հավասար է EBC եռանկյանը։ Այն նույն BC հիմքի վրա է (EBC) և գտնվում է նույն BC և AE զուգահեռների միջև [Պնդում 1.37]։ Բայց, ABCD զուգահեռագծի մակերեսը ABC եռանկյան մակերեսի կրկնապատիկն է։ AC անկյունագիծը կիսում է վերջինս երկու մասի [Պնդում 1.34]։ Այսպիսով, ABCD զուգահեռագծի մակերեսը EBC եռանկյան մակերեսի կրկնապատիկն է։

Հետևաբար, եթե զուգահեռագիծը և եռանկյունը ունեն նույն հիմքը և նույն զուգահեռների միջև են, ապա զուգահեռագծի մակերեսը եռանկյան մակերեսի կրկնապատիկն է։ Սա այն էր, ինչ պետք էր ապացուցել։

Պնդում 42

Տրված ուղղագիծ անկյունով կառուցել տրված եռանկյանը հավասար զուգահեռագիծ.

ABC-ն տրված եռանկյունն է, իսկ D-ն՝ տրված ուղղագիծ անկյունը: Այսպիսով, անհրաժեշտ է կառուցել D անկյունով զուգահեռագիծ, որը հավասար է ABC եռանկյանը:

ElementsBook1-Propostion42.png

BC-ն E կետում կիսված է երկու հավասար մասի [Պնդում 1.10] և միացված է AE ուղիղը։ D անկյանը հավասար CEF անկյունը կառուցված է E կետում՝ EC կողմի վրա [Պնդում 1.23]։ A կետով գծված է AG ուղիղը, որը զուգահեռ է EC-ին [Պնդում 1.31] և C կետով գծված է CG ուղիղը, որը զուգահեռ է EF-ին [Պնդում 1.31]։ Հետևաբար, FECG-ն զուգահեռագիծ է։ Քանի որ BE-ն հավասար է EC-ին, ABE եռանկյունը հավասար է AEC եռանկյանը։ Դրանք հավասար BE և EC հիմքերի վրա են և նույն BC և AG զուգահեռների միջև [Պնդում 1.38]։ Հետևաբար, ABC եռանկյան մակերեսը AEC եռանկյան մակերեսի կրկնապատիկն է։ FECG զուգահեռագծի մակերեսը նույնպես AEC եռանկյան մակերեսի կրկնապատիկն է։ Այն ունի նույն հիմքը (AEC) և նույն զուգահեռների միջև է (AEC)[Պնդում 1.41]։ Հետևաբար, FECG զուգահեռագիծը հավասար է ABC եռանկյանը։ Իսկ FECG-ի CEF անկյունը հավասար է D անկյանը։

Հետևաբար, ABC եռանկյանը հավասար FECG զուգահեռագիծը կառուցված է CEF անկյունով, որը հավասար է D անկյանը։ Սա այն էր, ինչ պետք էր անել։

Պնդում 43

Ցանկացած զուգահեռագծի համար անկյունագծի շուրջ զուգահեռագծերի լրացումները հավասար են միմյանց:

ABCD-ն զուգահեռագիծ է, իսկ AC-ն՝ նրա անկյունագիծը: EH-ը և FG-ն զուգահեռագծեր են AC-ի շուրջ, իսկ BK-ն և KD-ն՝ այսպես կոչված լրացումները (AC-ի շուրջ): Պնդումն այն է, որ BK լրացումը հավասար է KD լրացմանը:

Քանի որ ABCD-ն զուգահեռագիծ է և AC-ն նրա անկյունագիծն է, ABC եռանկյունը հավասար է ACD եռանկյանը [Պնդում 1.34]։ Կրկին, քանի որ EH-ը զուգահեռագիծ է և AK-ը նրա անկյունագիծը, AEK եռանկյունը հավասար է AHK եռանկյանը [Պնդում 1.34]։ Այսպիսով, նույն պատճառով, KFC եռանկյունը հավասար է KGC եռանկյանը։ հետևաբար, քնաի որ AEK եռանկյունը հավասար է AHK եռանկյանը և KFC-ն KGC-ին, AEK և KGC եռանկյունների գումարը հավասար է AHK և KFC եռանկյունների գումարին։ Իսկ ամբողջ ABC եռանկյունը հավասար է ամբողջ ADC եռանկյանը։ Հետևաբար, հավելյալ BK լրացումը հավասար է հավելյալ KD լրացմանը։

ElementsBook1-Propostion43.png

Հետևաբար, ցանկացած զուգահեռագծի համար անկյունագծի շուրջ զուգահեռագծերի լրացումները հավասար են միմյանց: Սա այն էր, ինչ պետք էր ցույց տալ։

Պնդում 44

Տրված ուղղագիծ անկյանով տրված ուղիղ գծի վրա կիառուցել տրված եռանկյանը հավասար զուգահեռագիծ:

ElementsBook1-Propostion44.png

AB-ն տրված ուղիղն է, C-ն՝ տրված եռանկյունը, D-ն՝ տրված ուղղագիծ անկյունը։ Այսպիսով, պահանջվում է տրված C եռանկյանը հավասար զուգահեռագիծ կառուցել տրված AB ուղղի վրա՝ D-ին հավասար անկյան տակ։

BEFG զուգահեռագիծը՝ հավասար C եռանկյանը, կառուցված է EBG անկյունով, որը հավասար է D անկյանը [Պնդում 1.42]։ Այն տեղադրված է այնպես, որ BE-ն ընկնում է ուղիղ AB-ի վրա[4]։ H կետով գծված է FG-ն և A կետով գծված է AH-ը, զուգահեռ BG-ին կամ EF-ին [Պնդում 1.31] և միացված է HB հատվածը։ Քանի որ HF ուղիղը հատում է AH և EF զուգահեռները, AHF և HFE անկյունները, հետևաբար, հավասար են երկու ուղիղ անկյունների [Պնդում 1.29]։ Հետևաբար, BHG-ի և GFE-ի գումարը փոքր է երկու ուղիղ անկյունից և ներքին անկյուններից (որոնց գումարը փոքր է երկու ուղիղ անկյուններից) ձգվող և անվերձության ձգտող ուղիղները հատվում են [Կանխադրույթ 5]: Հետևաբար, HB-ն և FE-ն, եթե գծվեն, կհատվեն։ Ենթադրենք դրանք գծված են և հատվում են K կետում։ K կետով գծված է KL-ը, որը զուգահեռ է EA-ին կմա FH-ին [Պնդում 1.31]։ Ենթադրենք, նաև, որ գծված են HA-ն և GB-ն համապատասխանաբար L և M կետերից։ Հետևաբար, HLKF-ն զուգահեռագիծ է և HK-ն դրա անկյունագիծն է։ AG-ն և ME-ն նույնպես զուգահեռագծեր են և LB-ն ու BF-ը այսպես կոչված լրացումներ են HK-ին։ Հետևաբար, LB-ն հավասար է BF-ին [Պնդում 1.43]։ Բայց, BF-ը հավասար է C եռանկյանը։ Հետևաբար, LB-ն հավասար է C-ին։ Նաև, քանի որ GBE-ն հավասար է ABM-ին [Պնդում 1.15], բայց GBE-ն նաև հավասար է D-ին, հետևաբար, ABM-ը հավասար է D-ին։

Հետևաբար, LB զուգահեռագիծը, որը հավասար է C եռանկյանը, կառուցված է տրված AB ուղղի վրա՝ ABM անկյունով, որը հավասար է D անկյանը։ Սա այն էր, ինչ պետք էր անել։

Պնդում 45

Պնդում 46

Պնդում 47

Պնդում 48

Նշումներ

  1. Որպես ակնհայտ ընդարձակում As an obvious extension of C.N.s 2 & 3—if equal things are added or subtracted from the two sides of an inequality then the inequality remains an inequality of the same type.
  2. Այստեղ առաջին անգամ «հավասար» նշանակում է «մակերեսով հավասար», այլ ոչ թե «համապատասխան»։
  3. Այս ամբողջ պնդումը Հայբերգի կողմից դիտվում է որպես սկզբնական տեքստի համեմատաբար վաղ ինտերպոլացիա:
  4. Սրան կարելի է հասնել օգտագործելով 1.3, 1.23, և 1.31 պնդումները։