Տարերք/Գիրք 13

Գրապահարան-ից
Jump to navigation Jump to search
Տարերք, Գիրք 13

հեղինակ՝ էվկլիդես
աղբյուր՝ Euclid's Elements of Geometry, English translation by Richard Fitzpatrick

Անավարտ
Այս ստեղծագործությունը դեռ ամբողջովին տեղադրված չէ Գրապահարանում



Pages 506-530

Պնդում 1

Եթե հատվածը մասնատենք արտաքին և միջին համեմատությամբ, ապա մեծ հատվածի և ամբողջ հատվածի կեսի գումարի քառակուսին հավասար է 5 անգամ ամբողջ հատվածի կեսի քառակուսուն։
Նկ․ 1
Նկ․ 1
Դիցուք՝ AB հատվածը բաժանված է արտաքին և միջին համեմատությամբ С-ում, որտեղ AC-ն մեծ հատվածն է։ Շարունակենք AC հատվածը, և տեղադրենք AD = AB / 2։ Ես պնդում եմ, որ СD^2 = 5*(DA^2):
Դիտարկենք AB և CD կողմերով քառակուսիները՝ ABEK և DLFC (Նկ․ 1)։ Տանենք DF անկյունագիծը և FC հատվածը շարունակենք և հատենք KE-ի հետ G-ում։ Քանի որ AB հատվածը բաժանված է արտաքին և միջին հարաբերությամբ C-ում, ապա AB և BC կողմերով ուղղանկյան մակերեսը հավասար է AC կողմով քառակուսու մակերեսին`

AC^2 = AB * BC (Սահմ․ 6․3, Պնդ․ 6․17)։ Հետևաբար CBEG ուղղանկյան մակերեսը հավասար է FH անկյունագծով քառակուսու մակերեսին (Նկ․ 1): Եվ քանի որ AB = 2 * AD և BA = KA, AD = AH, հետևաբար KA = 2 * AH: Այսպիսով ստանում ենք հարաբերություն՝ KA / AH = ACGK-ի մակերես / HC անկյունագծով ուղղանկյան մակերես (Պնդ․ 6․1), հետևաբար՝ ACGK ուղղանկյան մակերեսը հավասար է երկու անգամ CH անկյունագծով ուղղանկյան մակերեսին: Եվ քանի որ LH անկյունագծով ուղղանկյունը հավասար է CH անկյունագծով ուղղանկյանը, ապա նրանց մակերեսների գումարը հավասար է երկու անգամ СH անկյունագծով ուղղանկյան մակերեսին (Պնդ․ 1․43): Այսպիսով ACKG ուղղանկյան մակերեսը հավասար է LH և HC անկյունագծերով ուղղանկյունների մակերեսների գումարին։ Եվ քանի որ, ինչպես ցույց տրվեց վերևում, ուղղանկյուն СBEG-ի մակերեսը հավասար է FH անկյունագծով քառակուսու մակերեսին, ապա ABEK-ի մակերեսը հավասար է գնոմոն MNO-ին (CH, FH, LH անկյունագծերով ուղղանկյունների մակերեսների գումարին): Եվ քանի որ գնոմոն MNO = 4 * AP, հետևաբար DLFC քառակուսու մակերեսը հավասար է 5 անգամ AP անկյունագծով քառակուսու մակերեսին։ Այսպիսով СВ^2 = 5*(DA^2): Այսպիսով, եթե հատվածը մասնատենք արտաքին և միջին համեմատությամբ, ապա մեծ հատվածի և ամբողջ հատվածի կեսի գումարի քառակուսին հավասար է 5 անգամ ամբողջ հատվածի կեսի քառակուսուն, ինչը և պահանջվում էր ապացուցել։