Տարերք/Գիրք 2
Բովանդակություն
Pages 49-55
Սահմանումներ
1. Ցանկացած ուղղանկյուն զուգահեռագիծ համարվում է սահմանափակված ուղիղ անկյուն կազմող երկու ուղիղ գծերով։
2. Ցանկացած զուգահեռագիծ պատկերում նրա անկյունագծի շուրջ (վերցված) ցանկացած զուգահեռագիծ իր երկու լրացումների հետ միասին կոչվում է գնոմոն։
Պնդում 1
Պնդում 2
Պնդում 3
Պնդում 4
Պնդում 5
Pages 56-68
Պնդում 8†
Պնդում 6†
Հետևաբար, քանի որ AC-Ն և CB-Ն հավասար են, AL և CH անկյունագծերով ուղղանկյունները նույնպես հավասար են [Պնդում 1.36]։ CH անկյունագծով ուղղանկյունն էլ հավասար է HF անկյունագծովին [Պնդում 1.43], որից հետևում է, որ AL անկյունագծով ուղղանկյունը հավասար է HF անկյունագծովին։ Երկու կողմերին էլ ավելացնենք CM անկյունագծով ուղղանկյունը։ Կստացվի, որ AM անկյունագծով ուղղանկյունը և NOP գնոմոնը հավասար են։ Իսկ AM անկյունածով ուղղանկյունը կարող ենք կառուցել AD և DB կողմերով։ DM-ն ու DB-ն նույնպես հավասար են, հետևաբար NOP գնոմոնը հավասար է AD-ով և DB-ով կառուցված ուղղանկյանը։ Երկու կողմին էլ ավելացնենք LG անկյունագծով քառակուսին, որը հավասար է BC հիմքով քառակուսուն։ Այսպիսով՝ AD և DB կողմերով ուղղանկյան և CB հիմքով քառակուսու գումարը հավասար է NOP գնոմոնի և LG անկյունագծով քառակուսու գումարին։ Սակայն NOP գնոմոնն ու LG անկյունագծով քառակուսին համարժեք են ողջ CEFD-ին, որը ընկած է CD-ի վրա։ Հետևում է, որ AD-ով և DB-ով կառուցված ուղղանկյան և CB հիմքով քառակուսու գումարը հավասար է CD հիմքով քառակուսուն։ Հետևաբար, հատվածը կիսելու և դրան ուղիղ գծով այլ հատված կցելու արդյունքում՝ ստացված ողջ հատվածով և ավելացված մասով կառուցված ուղղանկյան և հատվածի կեսով կառուցված քառակուսու գումարը հավասար է նախնական հատվածի կեսի և կցված հատվածի գումարով ստացված նոր հատվածով կառուցված քառակուսուն։
† Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ (2a + b) b + a^2 = (a + b)^2։
Պնդում 7†
Հատվածը կամայական կետում հատելիս՝ ստացված հատվածներից պատահականորեն ընտրված մեկի և ողջ հատվածի քառակուսիների գումարը հավասար է ողջ և նախապես ընտրված հատվածներով կառուցված ուղղանկյան մակերեսի կրկնապատիկի և հատման արդյունքում առաջացած մյուս հատվածի երկարության քառակուսու գումարին։
Տրված AB հատվածը հատենք C կետում: AB և BC հատվածների քառակուսիների գումարը հավասար է AB և BC հատվածներով որոշված ուղղանկյան մակերեսի կրկնապատիկի և CA կողմով քառակուսու մակերեսի գումարին։ Կառուցենք ADEB քառակուսին՝ AB կողմով սահմանված։ Կառուցենք նաև գծագրի մնացած մասը։ AG և GE անկյունագծերով ուղղանկյունները հավասար են, երկուսին էլ կցենք CF անկյունագծով քառակուսին։ Արդյունքում AF և CE անկյունագծերով ուղղանկյունները հավասար կլինեն։ Հետևաբար, AF և CE անկյունագծերով ուղղանկյունների գումարը հավասար է AF անկյունագծով ուղղանկյան կրկնապատիկին։ Սակայն AF և CE անկյունագծերով ուղղանկյունների գումարը KLM գնոմոնն է և CF անկյունագծով քառակուսին։ Հետևաբար, KLM գնոմոնը և CF անկյունագծով քառակուսին AF անկյունագծով ուղղանկյան կրկնապատիկն են կազմում։ Մինչդեռ AF անկյունագծով ուղղանկյան կրկնապատիկը նաև AB և BC կողմերով կառուցված ուղղանկյան կրկնապատիկին է հավասար։ BF-ն ու BC-ն հավասար են։ Հետևում է, որ KLM գնոմոնն ու CF քառակուսին հավասար են AB և BC կողմորով կառուված ուղղանկյան կրկնապատիկին։ Երկու կողմերին էլ ավելացնենք DG անկյունագծով քառակուսին։ Արդյունքում՝ KLM գնոմոնն ու BG և GD անկյունագծերով քառակուսիները հավասար են AB և BC կողմերով կառուցաված ուղղանկյանն ու AC անկյունագծովո քառակուսուն։ Բայց KLM գնոմոնն ու BG և GD քառակուսիները հավասարարժեք են ողջ ADEB-ին և CF-ին, որոնք AB և BC քառակուսիներն են։ Հետևաբար, AB և BC քառակուսիների գումարը հավասար է AB և BC կողմերով կազմված քառակուսու կրկնապատիկին և AC քառակուսուն։ Այսպիսով՝ հատվածը կամայական կետում հատելիս՝ ստացված հատվածներից պատահականորեն ընտրված մեկի և ողջ հատվածի քառակուսիների գումարը հավասար է ողջ և նախապես ընտրված հատվածներով կառուցված ուղղանկյան մակերեսի կրկնապատիկի և հատման արդյունքում առաջացած մյուս հատվածի երկարության քառակուսու գումարին։
† Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ (a + b) ^2 + a^2 = 2(a + b)a + b^2: