Changes

Ժամանակի համառոտ պատմություն

Ավելացվել է 31 543 բայտ, 16:44, 4 Դեկտեմբերի 2017
/* 3 */
Այս պատճառով, 1970֊ականների սկզբին ստիպված եղանք մեր ուշադրությունը շեղել արտակարգ ծավալունի տեսությունից դեպի արտակարգ փոքրի տեսությունը, ըմբռնելու համար տիեզերքի բուն էությունը։ Հաջորդ գլխում մենք կնկարագրենք քվանտային մեխանիկայի էությունը, որպեսզի պատրաստ լինենք հետագայում փորձել միավորելու այս երկու մասնակի հզոր տեսությունները մեկում՝ գրավիտացիոն քվանտային տեսության մեջ։
 
 
==4==
 
Անորոշության սկզբունքը
 
Գիտական մտքի հաջողությունները, մասնավորապես Նյուտոնի ձգողականության տեսությունը հիմք դարձան, որ տասնիներորդ դարի սկզբին ֆրանսիացի գիտնական մարկիզ դը Լապլասը պնդի, որ տիեզերքը լրիվ որոշադրական (դետերմինիստական) է, այսինքն՝ կամքի ազատություն չի կարող լինել։ Լապլասը գտնում էր, որ պետք է գոյություն ունենա գիտական օրենքների մի շարք, որով մենք ի վիճակի լինենք կանխատեսել տիեզերքում տեղի ունենալիք ամեն ինչ, եթե միայն մեզ հայտնի է տիեզերքի վիճակը որոշակի ժամանակում։ Օրինակ, եթե մեզ հայտնի են արևի և մոլորակների դիրքերն ու արագությունները ժամանակի որևէ պահի, ապա, օգտվելով Նյուտոնի օրենքներից, կարող ենք հաշվել Արեգակնային համակարգի վիճակը որևէ այլ ժամանակում։ Այստեղ ուշադրությունն ակնհայտ է, սակայն Լապլասն ավելի առաջ անցավ և ենթադրեց, որ նման օրենքներ կան ամենուրեք, ընդհուպ մինչև մարդկային վարքագիծը։
 
Գիտական որոշադրության ուսմունքը շատերի կողմից դիմադրության հանդիպեց․ նրանք մտածում էին, որ դա սահմանափակում էր աշխարհի գործերին Աստծո ազատ միջամտությունը։ Այնուամենայնիվ, գիտության մեջ այն շարունակեց մնալ որպես սովորական մի ենթադրություն մինչև քսաներորդ դարի սկիզբը։ Այդ տեսակետից հրաժարվելու առաջին նշաններից մեկն ակնհայտ դարձավ, երբ անգլիացի գիտնականներ լորդ Ռելեն և պ֊ն Ջեյմս Ջինսը ցույց տվեցին, որ տաք առարկայի կամ մարմնի, ինչպիսին աստղն է, կողմից էներգիայի առաքումը կատարվում է անսահմանափակ քանակով։ Համաձայն այդ ժամանակ տարածված կարծիքի, տաք մարմինը էլեկտրամագնիսական ալիքներ է արձակում (ռադիոալիքներ, տեսանելի լույս կամ ռենտգենյան ճառագայթներ) բոլոր հաճախականություններով համաչափ։ Օրինակ, կարծում էին, որ տաք մարմինը նույնաքանակ էներգիա է ճառագայթում ինչպես մեկից մինչև երկու միլիոն միլիոն ալիք վայրկյանում, այնպես երկուսից մինչև երեք միլիոն միլիոն ալիք վայրյկանում տիրույթենրի հաճախականություններով։ Այսինքն, քանի որ ալիքների թիվը վայրկյանում սահմանափակված չէ, ապա ճառագայթված գումարային էներգիան նույնպես պետք է անսահմանափակ լինի։<ref>Ըստ Ռելե֊Ջինսի օրենքի, ճառագայթման էներգիան պետք է անսահման աճի ալիքի հաճախականության մեծությամբ, հասնելով արտասովոր մեծ արժեքների խորը ուլտրամանուշակագույն և ավելի կարճալիք տիրույթներում (հայտնի է է որպես, այսպես կոչված, «ուլտրամանուշակագույն աղետ»), բայց որի առավելագույն արժեքի, հաճախականության հետագա աճի հետ նվազում է։ Հաճախականությունների ամբողջ տիրույթում էներգիայի ճիշտ բաշխումը նկարագրվում է միայն քվանտային պատկերացումներով։</ref>
 
Այս ակնհայտ տարօրինակություններից խուսափելու համագերմանացի գիտնական Մաքս Պլանկը 1900֊ին մի միտք արտահայտեց․ այն է՝ ճառագայթող մարմինը չի կարող լուսային, ռենտգենյան կամ այլ ալիքային էներգիա առաքել կամայական քանակությամբ, այլ առաքում է որոշակի բաժիններով, որոնք նա անվանեց քվանտ։ Ավելին, յուրաքանչյուր քվանտ ունի որոշակի քանակի էներգիա, որն այնքան մեծ է, որքան բարձր է ալիքի հաճախականությունը, այնպես որ, բավականաչափ բարձր հաճախականության դեպքում մեկ քվանտի համար պահանջվում է ավելի էներգիա, քան հնարավոր է։ Այսպիսով բարձր հաճախականությունների տակ ճառագայթումը պետք է նվազի, և դրանով իսկ մարմնի էներգիա կորցնելու արագությունը պիտի լինի վերջավոր։
 
Թեև քվանտային հիպոթեզը շատ լավ բացատրեց տաք մարմնի ճառագայթման բնույթը, բայց նրա նշանակությունը որոշադրական առումով չիրականացավ մինչև 1926 թ․, երբ մի այլ գերմանացի գիտնական՝ Վերներ Հայզենբերգը ձևակերպեց իր նշանավոր անորոշության սկզբունքը։ Մի մասնիկի ապագա դիրքն ու արագությունը կանխագուշակելու համար մարդ պետք է կարողանա մեծ ճշտությամբ որոշել նրա ներկա դիրքն ու արագությունը։ Դրա համար պետք է մասնիկը լուսավորել։
 
Լույսի ալիքների մի մասը կցրվի մասնիկի կողմից, և դու ցույց կտա նրա դիրքը։ Սակայն հնարավոր չէ մասնիկի դիրքը որոշել ավելի մեծ ճշտությամբ, քան լույսի ալիքի գագաթների միջև եղած հեռավորությունը։ Հետևաբար մասնիկի դիրքը ճշգրիտ որոշելու համար անհրաժեշտ է օգտագործել կարճ ալիքի երկարություն ունեցող լույս։ Պլանկի քվանտային տեսության համաձայն, չի կարելի օգտագործել լույսի կամայական փոքր քանակություն, այլ առնվազն մեկ քվանտ։ Մասնիկի և այդ քվանտի բախման հետևանքով առաջինի արագությունը կմեծանա, որի չափը դժվար է կանխորոշել։ Ավելին, դիրքի որոշման բարձր ճշտության համար անհրաժեշտ է օգտագործել կարճալիք լույս, այսինքն՝ մեծ էներգիա ունեցող քվանտ։ Հետևաբար, մասնիկի արագության խոտորումը կլինի ավելի մեծ։ Այլ խոսքով ասած, որքան մեծ ճշտությամբ որոշվի մասնիկի դիրքը, այնքան փոքր կլինի նրա արագության որոշման ճշտությունը, և՝ հակառակը։ Հայզենբերգը ցույց տվեց, որ մասնիկի դիրքի և արագության որոշման անորոշությունների և զանգվածի արտադրյալը չի կարող ավելի փոքր լինել մի որոշակի մեծությունից, որը հայտնի է որպես Պլանկի հաստատուն։ Ավելին, այդ սահմանը կախված չէ այն բանից, թե ինչպիսի մասնիկ է դա, և ինչպես են որոշվում նրա դիրքն ու արագությունը։ Հայզենբերգի անորոշության սկզբունքը աշխարհի հիմնարար, անխուսափելի հատկանիշն է։
 
Անորոշության սկզբունքը մեծ նշանակություն ունեցավ աշխարհընկալման առումով։ Այս բանը նույնիսկ ավելի քան հիսուն տարի անց դեռևս լրիվ չի գնահատվել փիլիսոփաների կողմից և բանավեճի առիթ է տալիս նաև այսօր։ Անորոշության սկզբունքը վերջ տվեց գիտության տեսության մասին լապլասյան երազանքին, այսինքն՝ տիեզերքի լրիվ որոշադրական պատկերացմանը։ Եթե հնարավոր չէ նույնիսկ տիեզերքի այժմյան վիճակը ճշգրտորեն որոշել, ապա, իհարկե, չի կարեի ճշգրտորեն կանխագուշակել նրա ապագա դեպքերը։ Թերևս կարելի է ենթադրել, որ մի գերբնական էակ կարող է դիտարկել տիեզերքի ներկա վիճակը առանց այն խախտելու, և նրա համար կա դեպքերի ընթացքը կատարելապես որոշող օրենքների մի շարք։ Այնուամենայնիվ, տիեզերքի այդպիսի մոդելները մեզ՝ սովորական մահկանացուներիս համար ոչ մի հետաքրքրություն չեն ներկայացնի։
 
Թվում է, լավագույնը, Օկամի ածելի կոչված խնայողության սկզբուքն օգտագործելն ու տեսությունից կտրել, դեն նետելն է այն ամենը, ինչն ուղղակի դիտարկման ենթակա չէ։ Ահա այսպիսի մոտեցմամբ Հայզենբերգը, Էրվին Շրյոդինգերը և Պոլ Դիրակը 1920֊ական թվականներին մեխանիկան վերաձևակերպեցին մի նոր տեսության, որը կոչվում է քվանտային մեխանիկա և հիմնված է անորոշության սկզբունքի վրա։ Այս տեսության մեջ մասնիկները չեն առանձնանում ճշգրիտ որոշված դիրքերով և արագություններով, դրանք հնարավոր չէ դիտարկել։ Ընդհակառակը, դրանք գտնվում են քվանտային վիճակում, որը դիրքի ու արագության համակցություն է։
 
Ընդհանուր առմամբ տվյալ դեպքի համար քվանտային մեխանիկան որոշակի արդյունք չի կանխագուշակում։ Փոխարենը կանխագուշակում է հնարավոր մի քանի տարբեր հետևանքներ և տալիս յուրաքանչյուրի հավանականությունը։ Այսպես, եթե նույնասկիզբ մեծ թվով համանման համակարգերի համար կատարվել են նույն չափումները, արդյունքը որոշակի թվով դեպքերի համար կլինի A, այլ թվով դեպքերի համար՝ B և այլն։ Կարելի է կանխագուշակել, թե արդյունքը մոտավորապես քանի անգամ կլինի A կամ B, բայց հնարավոր չէ կանխագուշակել յուրաքանչյուր չափման կոնկրետ արդյունքները։ Հետևաբար, քվանտային մեխանիկան գիտության մեջ մտցնում է պատահականության կամ անկանխագուշակելիության անխուսափելի մի տարր։ Էյնտշեյնը խիստ կերպով առարկեց դրան, հակառակ այն բանի, որ հենց ինքը շատ մեծ դեր խաղաց այդ գաղափարի զարգացման գործում։ Բավական է ասել, որ նրան Նոբելյան մրցանակ շնորհվեց հենց այն մեծ ավանդի համար, որ նա ներդրել էր քվանտային տեսության ստեղծման գործում։ Այնուամենայնիվ, Էյնշտեյնը երբեք չհաշտվեց այն մտքի հետ, որ տիեզերքը կառավարվում է պատահականությամբ։ Նրա տարակուսանքը ամփոփված է նրա իսկ հայտնի հայտարարության մեջ․ «Աստված զառ չի խաղում»։ Սակայն, համարյա բոլոր գիտնականները ընդունեցին քվանտային մեխանիկան, որովհետև այն կատարելապես համընկնում էր փորձնական տվյալների հետ։ Արդարև քվանտային մեխանիկան դարձավ արտակարգ հաջողված մի տեսություն և համարյա ժամանակակից գիտության ու տեխնոլոգիայի հիմքն է։ Այս տեսությունը կառավարում է տրանզիստորների և միասնական շղթաների աշխատանքը, որոնք հեռուսատացույցների, հաշվողական մեքենաների և նման էլեկտրոնային սարքերի հիմնական բաղադրամասերն են։ Քվանտային մեխանիկան նաև կենսաբանության և ժամանակակից քիմիայի հիմքն է։ Ֆիզիկական գիտությունների այն բնագավառները, որտեղ քվանտային մեխանիկան առ այսօր հիմնավոր կերպով մուտք չի գործել, տիեզերքի ձգողականության ու խոշորամասշտաբ կառուցվածքի հարցերն են։
 
Չնայած լույսը կազմված է ալիքներից, շարժվում է ալիքաձև, սակայն Պլանկի քվանտային հիպոթեզը պնդում է, որ որոշ դեպքերում այն իրեն պահում է այնպես, կարծես մասնիկը կազմված լինի և կարող է առաքվել կամ կլանվել միայն մասերով՝ քվանտներով։
 
Մյուս կողմից՝ Հայզենբերգի անորոշության սկզբունքից բխում է, որ մասնիկները որոշ տեսակետից իրենց պահում են որպես ալիք, այսինքն՝ նրանք որոշակի տեղ չեն գրավում, այլ «ամպաձև», թեև որոշակի հավանականությամբ, բաշխված են տվյալ տարածքում։ Քվանտային մեխանիկայի տեսությունը հիմնված է բոլորովին նոր տեսակի մաթեմատիկայի վրա, որ իրական աշխարհն այլևս չի նկարագրում որպես մասնիկներ կամ ալիքներ, այլ որպես ալիքների ու մասնիկների մի երկվություն։ Որոշ նպատակներով հարմար է մասնիկները դիտարկել որպես ալիքներ, այլ նպատակների համար՝ ալիքները որպես մասնիկներ։ Դրա կարևոր հետևանքներից մեկը, որը կարելի է տեսնել, կոչվում է ինտերֆերենցիայի երևույթ՝ ալիքների և մասնիկների երկու շարքի միջև։ Ենթադրենք ալիքի մի շարքի գագաթները համընկել են մյուս շարքի փոսերի հետ։ Այդ դեպքում ալիքների երկու շարքը կոչնչացնեն միմյանց, արտաքուստ սպասվող՝ ալիքների ուժեղացման փոխարեն։
 
Լույսի ալիքների ինտերֆերենցիայի գեղեցիկ մի օրինակ է օճառի պղպջակի վրա գուների առաջացման երևույթը։ Դրա պատճառը պղպջակը կազմող ջրի բարակ թաղանթի՝ երկու կողմերից լույսի անդրադարձումն է։ Սպիտակ լույսը կազմված է տարբեր ալիքի երկարություն ունեցող կամ տարբեր գույն ունեցող լույսի ալիքներից։ Պղպջակի մի կողմից որոշ ալիքի երկարություններ ունեցող լույսի անդրադարձող ալիքների գագաթները կարող են հանդիպել մյուս կողմից անդրադարձող համապատասխան ալիքների փոսերին։ Այդ երկարության ալիքների համապատասխանող գույները կբացակայեն անդրադարձող լույսի մեջ, որի հետևանքով այն կերևա գունավոր։
 
Ինտերֆերենցիայի երևույթը դիտվում է նաև մասնիկների համար՝ քվանտային մեխանիկայի ներմուծած երկվության շնորհիվ։ Հանրահայտ օրինակ է, այսպես կոչված, երկու նեղ ճեղքերի փորձը (նկ․ 4.2):
 
Պատկերացնենք երկու զուգահեռ նեղ ճեղքեր ունեցող մի միջնապատ։ Այդ միջնապատի մի կողմում տեղադրենք որոշակի գույնի (այսինքն՝ որոշակի ալիքի երկարության) լուսաղբյուր։ Լույսի մեծ մասը կդիպչի միջնապատին, իսկ փոքր մասը կանցնի ճեղքերից։ Այժմ ենթադրենք միջնապատի մյուս կողմում տեղադրված է էկրան։ Էկրանի որոշ կետերի վրա կընկնեն ճեղքից անցած ալիքները։ Սակայն, սովորաբար, այն հեռավորությունը, որն անցնում լույսը աղբյուրից մինչև էկրան՝ երկու ճեղքերի միջով, տարբեր է։ Դա նշանակում է, որ ճեղքերից անցած ալիքները միևնույն փուլում չեն լինի էկրանին հասնելիս, ուստի էկրանի վրա որոշ տեղերում երկու ճեղքերից եկող ալիքները կոչնչացնեն միմյանց, այլ տեղերում՝ կուժեղացնեն։ Արդյունքում ստացվում է լուսավոր և խավար շերտերից կազմված լույսի ինտերֆերենցիայի նախշանկար։
 
Ուշագրավ է այն փաստը, որ ճիշտ նման պատկեր է ստացվում, երբ լույսի աղբյուրի փոխարեն դրվում է մասնիկների աղբյուր, օրինակ, որոշակի արագությամբ շարժվող էլեկտրոններ (դա նշանակում է, որ համապատասխան ալիքներն ունեն որոշակի երկարություն)։ Խիստ հատկանշական է, որ երբ միջնապատի վրա մեկ ճեղք կա, էկրանին շերտեր չեն ստացվում, այլ ստացվում է էլեկտրոնների կանոնավոր բաշխում։ Կարելի է մտածել, որ երկրորդ ճեղքը բացելիս էկրանի վրա յուրաքանչյուր կետին հարվածող էլեկտրոնների թիվը կաճի, բայց քանի որ տեղի է ունենում ինտերֆերենցիա, նշանակում է որոշ տեղերում էլեկտրոնների թիվը իրականում նվազում է։ Թվում է, թե, եթե էլեկտրոնները մեկ առ մեկ շարժվեն դեպի ճեղքերը, ապա նրանցից յուրաքանչյուրը միաժամանակ կարող է անցնել ճեղքերից միայն մեկով, կարծես թե էլեկտրոնի համար ճեղքերից միայն մեկը գոյություն ունենա, որով անցնելով էլեկտրոնները պետք է հավասարաչափ բաշխվեն էկրանի վրա։ Իրականում, սակայն, էլեկտրոնների մեկ առ մեկ անցման դեպքում անգամ ստացվում է շերտավոր պատկեր։ Մնում է եզրակացնել, որ յուրաքանչյուր էլեկտրոն պետք է անցնի երկու ճեղքերով միաժամանակ։
 
Մասնիկների ինտերֆերենցիայի երևույթի հայնտագործումը վճռական նշանակություն ունեցավ ատոմի կառուցվածքի էությունը իրապես ըմբռնելու համար։ Ատոմները քիմիայի և կենսաբանության հիմքը կազմող միավորներն են և այն շինարարական աղյուսները, որոնցով և՛ մենք, և՛ մեր շուրջ եղած ամեն ինչ կառուցված է։ Մեր դարաշրջանի սկզբներին մտածում էին, որ ատոմը կազմված է դրական լիցք ունեցող միջուկից, որի շուրջը շրջանաձև պտտվում են բացասական լիցք ունեցող էլեկտրոնները, ինչպես մոլորակները՝ արևի շուրջ։ Ենթադրվում էր, որ դրական և բացասական լիցքերի միջև ձգողությունը չեզոքացվում է, և էլեկտրոնները մնում են իրենց ուղեծրերում, ճիշտ այնպես, ինչպես արևի և մոլորակների միջև գրավիտացիոն ձգողությունն է մոլորակներին պահում իրենց ուղեծրերում։ Սակայն քվանտային մեխանիկայից առաջ եղած մեխանիկայի և էլեկտրականության օրենքներից հետևում էր, որ էլեկտրոնները աստիճանաբար էներգիա կորցնելով՝ պարուրաձև հետագծով պետք է ընկնեին միջուկի վրա։ Սա նշանակում էր, ատոմը և հետևապես նյութը ամբողջությամբ վերցրած, պիտի արագորեն կոլապսվեին մինչև անսահման խտություն ունեցող վիճակի։ Այս հարցն իր մասնակի լուծումը գտավ 1913 թվականին դանիացի գիտնական Նիլս Բորի կողմից։ Նա ենթադրեց, որ էլեկտրոնները չեն կարող պտտվել կենտրոնական միջուկից ցանկացած հեռավորության վրա, այլ շատ որոշակի, յուրահատուկ հեռավորությունների վրա են պտտվում։ Եթե ենթադրենք, որ միաժամանակ մեկ կամ երկու էլեկտրոն կարող են պտտվել այդ հեռավորություններից յուրաքանչյուրով, ապա դա կլուծի ատոմի կոլապսի խնդիրը, քանի որ էլեկտրոնները չեն կարող ամենափոքր հեռավորություն և էներգիա ունեցող ուղեծրից ավելի մոտիկ հեռավորության ուղեծիր անցնել։
 
Այս մոդելը շատ գեղեցիկ կերպով բացատրեց ամենապարզ ատոմի՝ ջրածնի կառուցվածքը, որի միջուկի շուրջը պտտվում է միայն մեկ էլեկտրոն։ Բայց հստակ չէր, թե այն ինչպես կարելի է տարածել ավելի բարդ ատոմների վրա։ Ավելին, սահմանափակ թվով թույլատրելի ուղեծրերի հարցը շատ կամայական է թվում։ Քվանտային մեխանիկայի նոր տեսությունը հաջողությամբ լուծում տվեց այս դժվարին հարցին։ Բացահայտվեց, որ միջուկի շուրջ պտտվող էլեկտրոնը կարելի է պատկերացնել որպես ալիք, որի երկարությունը կախված է նրա արագությունից։ Համապատասխան ուղեծրերի համար երկարությունը հավասար է ամբողջական թվով (հակառակ կոտորակային թվի) ալիքի երկարության։ Այդ ուղեծրի համար ալիքի գագաթի փոսը յուրաքանչյուր պտույտի համար կլինի նույն դիրքում, հետևաբար, ալիքները կգումարվեն․ այդ ուղեծրերը համապատասխանում են Բորի թույլատրելի ուղեծրերին։ Իսկ այն ուղեծրերը, որոնց երկարությունը հավասար չէ ամբողջական թվով ալիքի երկարության, թույլատրելի չեն, որովհետև այդ դեպքում յուրաքանչյուր գագաթ հաջորդ շրջապտույտի ժամանակ կոչնչացվի համապատասխան փոսի կողմից։
 
Ալիք֊մասնիկային երկվության մասին տեսանելի պատկերացում է տալիս ամերիկացի գիտնական Ռիչարդ Ֆեյնմանի առաջարկած, այսպես կոչված, պատմությունների գումարը։ Այս մոտեցման մեջ չի ենթադրվում, որ մասնիկը տարածություն ժամանակի մեջ ունի մի ուղի կամ մի պատմություն, ինչպես դասական կամ ոչ քվանտային տեսության մեջ։ Փոխարենը ենթադրվում է, որ մասնիկը A֊ից B գնում է ամեն հնարավոր ճանապարհով։ Յուրաքանչյուր ճանապարհ բնութագրվում է երկու թվով․ մեկը համապատասխանում է ալիքի չափին, մյուսը՝ դիրքին բոլորաշրջանի (ցիկլի) մեջ (այսինքն՝ որտեղ է գագաթին, որտեղ՝ փոսում)։ A֊ից B գնալու հավանականությունը կարեի է իմանալ բոլոր ուղիներով գնացող ալիքները գումարելով։ Ընդհանրապես, եթե մի խումբ հարևան ուղիներ համեմատենք, ապա դրանցում ալիքների դիրքերը կամ փուլերը իրարից շատ տարբեր կլինեն։ Սա նշանակում է, որ այդ ուղիներով շարժվող ալիքները գրեթե ճշգրտորեն իրար կմարեն։ Հետևաբար, այդ ուղիները թույլատրելի չեն լինի։ Սակայն որոշ հարևան ուղիների համար ալիքների փուլերը շատ չեն տարբերվի իրարից։ Այս ուղիների ալիքները իրար չեն մարի, այսինքն այս ուղիները համապատասխանում են Բորի թույլատրելի ուղեծրերին։
 
Օգտագործելով այս գաղափարը՝ մշակվեց համապատասխան մաթեմատիկական բանաձև և հնարավոր դարձավ հաշվել բոլոր թույլատրված ուղեծրերը ավելի բարդ, բազմաէլեկտրոն ատոմների համար, նույնիսկ մոլեկուլների համար, որոնք կազմված են մեկից ավելի միջուկների շուրջ պտտվող էլեկտրոններով իրար հետ կապված ատոմներից։ Քանի որ մոլեկուլների կառուցվածքը և միմյանց հետ նրանց փոխազդեցություններն ընկած են քիմիայի և կենսաբանության հիմքում, ապա քվանտային մեխանիկան թույլ է տալիս սկզբունքորեն կանխորոշել գրեթե այն ամենը, ինչ կատարվում է մեր շրջապատում, իհարկե, անորոշության սկզբունքի սահմաններում։ (Գործնականում, սակայն, մեծ թվով էլեկտրոններ և միջուկներ պարունակող համակարգերի և դրանց փոխազդեցությունների համար հաշվումներն այն աստիճան բարդ են, որ համարյա անհնար է իրականացնել)։
 
Թվում է, թե Էյնշտեյնի հարաբերականության ընդհանուր տեսությունը նկարագրում է տիեզերքի խոշորամասշտաբ կառուցվածքը։ Դա այն է, ինչը կոչվում է դասական տեսություն, որը հաշվի չի առնում քվանտային մեխանիկայի անորոշության սկզբունքը, ինչը հարկավոր է մյուս տեսությունների հետ ներդաշնակ լինելու համար։ Սակայն այս անտեսումը հարաբերականության ընդհանուր տեսության կանխատեսումների և դիտարկումների միջև հսկայական պատճառ չի դառնում, որովհետև գրավիտացիոն դաշտը, որի հետ մենք առնչվում ենք շատ թույլ է։ Բայց, ինչպես ցույց են տալիս վերը նշված եզակիության թեորեմները, ձգողական դաշտը խիստ ուժեղանում է առնվազն երկու պարագայում՝ սև խոռոչների և Մեծ պայթյունի համար։ Այսպիսի ուժեղ դաշտերում քվանտային մեխանիկայի դերը շատ կարևոր է։ Այլ կերպ ասած, դասական հարաբերականության ընդհանուր տեսությունը՝ կանխագուշակելով անսահման խիտ կետերի առաջացումը, նախանշեց իր սեփական անզորությունը ճիշտ այնպես, ինչպես դասական (այսինքն՝ ոչ քվանտային) մեխանիկան կանխագուշակեց իր կործանումը, կանխագուշակելով, որ ատոմները պիտի կոլապսվեն մինչև անսահման մեծ խտության։ Մենք դեռևս չունենք կատարյալ և հետևողական մի տեսություն, որը միավորեր ընդհանուր հարաբերականությունը և քվանտային մեխանիկան, բայց գիտենք, թե այդպիսի միացյալ տեսությունն ինչպիսի հատկանիշներ պիտի ունենա։ Թե այն ինչպիսի հետևանքներ կարող է ունենալ սև խոռոչների և Մեծ պայթյունի էությունները բացատրելու համար, կնգարագրվի հաջորդ գլուխներում։ Մի պահ, սակայն, անդրադառնանք ժամանակակից այն աշխատանքներին, որոնք փորձում են բնության մեջ գործող այլ ուժերի մասին մեր ունեցած պատկերացումներն ամփոփել մի եզակի, միացյալ քվանտային տեսության մեջ։
 
55
edits