Դատողություններ անելով լուսատուների ծագելու, մայր մտնելու և ուրիշ նման երևույթն երի մասին, մենք նկատի ենք ունենում միայն այն '''ուղղությունը''', որով երևում են աստղերը (օրինակ, հորիզոնի մոտ, մեր գլխավերևը և այլն), ուստի միևնույն է, թե ինչպիսի շառավիղ մենք կերևակայենք երկնային սֆերայի համար։ Նկ. 7-ը, օրինակ, ցույց է տալիս, որ դիտողին որևէ ուղղությամբ երևացող ամեն մի աստղ հենց այդ ուղղությամբ էլ կերևա, թեկուզ ի՛նչպիսի սֆերայի վրա էլ նրան պատկերացնելու լինենք՝ R<sub>1</sub> շառավիղ ունեցող սֆերայի, թե R<sub>2</sub> շառավիղ ունեցող սֆերայի վրա։ Այդ պատճառով էլ ասում են, որ երկնային սֆերան անորոշ կամ կամայական շառավիղ ունի։
[[Պատկեր:Astronomy_pic_007.png|400px|frameless|thumb|center]]
'''Անցնելով դիտողի աչքով, ուղղաձիգ գիծը երկնային սֆերան հատում է զենիթի կետում։ Զենիթը դիտողի գլխավերևի ամենաբարձր կետն է'''։ Ուղղաձիգ գծի ուղղությունը ցույց է տալիս ուղղալարը՝ թելից կախած փոքրիկ ծանրությունը։ Ուղղաձիգ գծին ուղղահայաց հարթությունը կոչվում է հորիզոնական հարթություն։
Նույնպիսի դիտում կատարելով երկնքի արևմտյան մասում գտնվող աստղերից մեկի նկատմամբ, մենք կհամոզվենք, որ աստղերը Արեգակի և Լուսնի նման բարձրանում են հորիզոնի արևելյան կողմից, հասնում են իրենց ամենաբարձր դիրքին՝ երկնքի հարավային մասում և այնուհետև մայր են մտնում հորիզոնի արևմտյան կողմում։ Հաջորդ օրը նրանք կկատարեն նույն շարժումը, ըստ երևույթին, այդպիսով օրվա ընթացքում մի լրիվ շրջան կատարելով երկնքում։
[[Պատկեր:Astronomy_pic_008.png|500px|frameless|thumb|center]]
Այդ օրական պտույտի ժամանակ բոլոր աստղերը տեղաշարժվում են առանց իրենց փոխադարձ դասավորությունը փոխելու։ Թվում է, թե աստղային երկինքը պտտվում է ինչպես մի ամբողջություն ժամացույցի սլաքի շարժման ուղղությամբ՝ օրական մի լրիվ պտույտի արագությամբ։
Քանի որ Երկիրը մի լրիվ պտույտ (360°) կատարում է 24 ժամում, ուստի երկայնության յուրաքանչյուր 15° հավասար է երկայնության 1 ժամին և այդպիսով՝ 1° = 4 րոպեի, 1 րոպեն = 15՛ և 1 վայրկյանը =15՛՛։ Մոսկվայի և Գրինվիչի միջօրեականների հարթությունների միջև կազմած անկյունը հավասար է 37°34՛։ Մոսկվայի երկայնությունը Գրինվիչից հենց այդ 37°34՛ կամ 2 ժամ 30,3 րոպեին է հավասար. այդ երկայնությունն արևելյան է։
[[Պատկեր:Astronomy_pic_009.png|240px|frameless|thumb|left]]
'''Աշխարհագրական լայնությունը չափվում է այն անկյան մեծությամբ, որ հասարակածի հարթության հետ կազմում է երկրի տվյալ վայրով անցնող ուղղաձիգ գիծը'''։ Եթե Երկիրն իսկական գունդ համարենք, ապա ուղղաձիգ գիծն ամենուր անցնում է ուղիղ Երկրի կենտրոնով և համընկնում է տվյալ վայրում Երկրի շառավղի հետ։
Ներքոհիշյալ հետաքրքիր փորձը, որ մատչելի է լուսանկարչությանը ծանոթ ամեն մի դպրոցականի, ակնառու կերպով ցույց է տալիս երկնային սֆերայի օրական պտույտի ընթացքը։ Անլուսին պարզ գիշերը լուսանկարչական ապարատը տեղակայելով «անսահմանության վրա», ուղղում են դեպի Բևեռային աստղը՝ ցածից ամրացնելով որևէ հենարանի վրա։ Ապարատն այդպես ամրացված վիճակում մի քանի ժամով թողնում են բաց փականակով, այնուհետև թիթեղը հայտածում են։ Լուսանկարչական թիթեղի (նեգատիվի) վրա հայտնվում են աստղերի սև հետքերը (պոզիտիվի վրա՝ սպիտակ հետքերը, նկ. 10)։ Այդ բոլոր գծերը համակենտրոն աղեղների տեսք ունեն։ Այդ աղեղների գծային երկարությունները տարբեր են, բայց աստիճանային չափերով նրանք հավասար են։ Նրանց կենտրոնում ընկած Է պտտման կենտրոնը։
[[Պատկեր:Astronomy_pic_010.png|360px|frameless|thumb|center]]
Պտտման ճիշտ նույնպիսի կենտրոն կարելի Է գտնել երկնքի նաև հարավային կիսագնդում։ Նա գտնվում Է երկնային սֆերայի մի կետում, որն ուղիղ հակադիր է աշխարհի հյուսիսային կիսագնդի հենց այն կետին, որի մասին քիչ առաջ խոսեցինք։ Բայց չէ՞ որ երկնային սֆերայի կենտրոնում գտնվում է մեր աչքը։ Հետևաբար, դիտելով երկինքը, մենք համոզվում ենք, որ երկն աչին սֆերան որպես մի ամբողջություն պտտվում է մի ինչ-որ առանցքի շուրջը, որն անցնում է մեր աչքով։ '''Երկնային սֆերայի օրական պտույտի առանցքը կոչվում է աշխարհի առանցք'''։ Այդ առանցքի ուղղությունը մենք կգտնենք, եթե մեր աչքով մտքով ուղիղ գիծ տանենք դեպի երկնքի՝ վերը նկարագրած ձևով գտած կետը, որը չի մասնակցում երկնային սֆերայի օրական պտույտին։
''Հորիզոնի կետերը։'' Հորիզոնը հատվում է երկնային միջօրեականի հետ՝ հյուսիսի (N) և հարավի (S) կետերում, իսկ երկնային հասարակածի հետ՝ արևելքի (E) և արևմուտքի (W) կետերում։ Եթե մենք կանգնենք երեսներս դեպի աշխարհի բևեռը (Բևեռային աստղը), ապա ուղիղ նրա տակ՝ հորիզոնի վրա կունենանք հյուսիսի կետը, մեր թիկունքի կողմը՝ հարավի կետը, աջ կողմում՝ արևելքի կետը և ձախ կողմում՝ արևմուտքի կետը։ Հիշելով այդ, մենք միշտ էլ կարող ենք կողմն որոշվել տեղանքում։
[[Պատկեր:Astronomy_pic_011.png|270px|frameless|thumb|left]]
Այս պարագրաֆում բերված սահմանումները պետք է հիմնավորապես ըմբռնել և լավ հիշել, որովհետև առանց նրանց թե՛ երկնային ամենապարզ երևույթները և թե՛ աստղագիտության գործնական կիրառումները անհասկանալի կմնան։ Որպեսզի ավելի լավ պատկերացնենք այն բոլորը, ինչ որ վերն ասված է, երկնային սֆերան պատկերացնեն գծագրի վրա (նկ. 11)։ Այդ գծագրի վրա C երկնային սֆերայի կենտրոնն է, որտեղ գտնվում է դիտողի աչքը Z՛CZ ուղղաձիգ գիծն է, ընդ որում՝ Z — զենիթն է, Z՛ — նադիրը (զենիթի հակադիր կետը երկնային սֆերայում)։ P՛P աշխարհի առանցքն է, P — աշխարհի հյուսիսային բևեռն է, P՛ — աշխարհի հարավային բևեռը, EAWQ — երկնային հասարակածն է, որի հարթությունն ուղղահայաց է աշխարհի առանցքին, EAWN — հորիզոնն է, S — հարավի կետն է, N — հյուսիսի կետը, E — արևելքի կետը և W — արևմուտքի կետը։ Դժվար չէ հասկանալ, որ հորիզոնից վերև երևում են երկնային սֆերայի ուղիղ կեսը և երկնային հասարակածի նույնպես ուղիղ կեսը, նաև այն, որ E և W կետերում (որոնք N և S կետերից գտնվում են 90° հեռավորության վրա) և՛ հորիզոնը, և՛ հասարակածը կիսվում են։
Քանի որ Բևեռային աստղը աշխարհի բևեռում չի գտնվում, ուստի միջօրեի գիծն այդ ձևով որոշելու ժամանակ մենք կարող ենք սխալվել մի անկյունով, որը Լենինգրադի լայնության վրա հասնում է մոտ 2°-ի, իսկ ավելի հյուսիս ընկած վայրերում՝ դրանից էլ ավելի։
[[Պատկեր:Astronomy_pic_012.png|120px|frameless|thumb|left]]
բ) ''Ցերեկը՝ ըստ Արեգակի։'' Հարթ մակերևույթի վրա ամրացնենք մի ուղղահայաց (ուղղալարի միջոցով) ձող (նկ. 12)։ Կեսօրից 2 ժամ առաջ այդ հարթության վրա ձողի ստվերի ծայրը նշանակենք A-ով և ձողի S հիմքից, որպես կենտրոնից, մի շրջանագիծ գծենք՝ ստվերի AS երկարությանը հավասար շառավղով։ Ձողի ստվերը կսկսի աստիճանաբար կարճանալ և թեքվել դեպի հյուսիս։ Կեսօրից հետո նա կսկսի երկարանալ, շարունակելով թեքվել նույն ուղղությամբ։ Երեկոյան կողմը ստվերի ծայրը նորից կհասնի մեր շրջանագծին և կշոշափի մի կետում, նշանակենք B տառով։ A և B կետերը միացնենք ուղիղ գծով, որի N մեջտեղը միացնելով ձողի S հիմքի հետ, կստանանք միջօրեի գծի ուղղությունը։
§ 15. ԿՈՈՐԴԻՆԱՏՆԵՐԻ ՀՈՐԻԶՈՆԱԿԱՆ ՍԻՍՏԵՄ։ Նկ. 13-ում պատկերված է երկնային սֆերայի այն կեսը, որ երևում է հորիզոնից վերև։ NQS շրջանագիծը հորիզոնն է, Z — զենիթն է, S — հարավի կետն է։ Երկնային սֆերայում եղած M կետի դիրքը որոշելու համար զենիթից այդ կետի վրայով անցկացնենք մեծ ուղղաձիգ շրջանի ZQ աղեղը։ M կետի հորիզոնական կոորդինատները կլինեն՝ QM '''աղեղով չափվող բարձրությունը''' (h), '''որն արտահայտում է''' M '''կետի անկյունային հեռավորությունը հորիզոնից, և''' SQ '''աղեղով չափվող ազիմուտը''' (A), '''որը հարավի''' S '''կետից հաշվվում է դեպի արևմուտք և արտահայտում է երկնային միջօրեականով և''' M '''կետով անցնող ուղղաձիգ շրջանագծով կազմած անկյունը։'''
[[Պատկեր:Astronomy_pic_013.png|250px|frameless|thumb|left]]
[[Պատկեր:Astronomy_pic_014.png|250px|frameless|thumb|right]]
'''Հաճախ''' h '''բարձրության փոխարեն գործ են ածում զենիթային հեռավորությունը՝''' z, '''որը հավասար է''' 90°—h '''և իրենից ներկայացնում է''' M '''կետի անկյունային հեռավորությունը զենիթից։''' Բարձրությունը, զենիթային հեռավորությունը և ազիմուտը արտահայտում են աստիճաններով։
Այսպիսով, լուսատուների հակումը նման է աշխարհագրական լայնությանը, իսկ ուղղակի ծագումը՝ աշխարհագրական երկայնությանը։ Աստղային քարտեզների վրա (տե՛ս, օրինակ, կցված դասագրքին ) գծվում է այդ կոորդինատների ցանցը, իսկ ինքը՝ երկնային սֆերան պատկերվում է հարթության վրա այնպես, ինչպես պատկերվում է երկրագունդը։
[[Պատկեր:Astronomy_pic_015.png|200px|frameless|thumb|right]]
§ 17*. ԼՈՒՍԱՏՈՒՆԵՐԻ ԿՈՈՐԴԻՆԱՏՆԵՐԸ ՈՐՈՇԵԼՈՒ ԳՈՐԾՆԱԿԱՆ ԵՂԱՆԱԿՆԵՐԸ։ Եթե իմանայինք լուսատուների հասարակածային կոորդինատները, որոնք կախում չունեն ո՛չ դիտողի՝ Երկրի վրա ունեցած դիրքից , և ոչ էլ օրվա ժամից, ապա այդ կոորդինատները կարելի կլիներ գրանցել կատալոգների մեջ և այդ լուսատուների դիրքերը պատկերել աստղային քարտեզի վրա։ Բայց ինչպե՞ս գործնականորեն որոշել այդ կոորդինատները, ինչպե՞ս չափել նրանց՝ դիտումների միջոցով։
§ 18*. ՄԹՆՈԼՈՐՏԱՅԻՆ ՌԵՖՐԱԿՑԻԱՆ ԼՈՒՅՍԻ ԲԵԿՈՒՄՆ է ԵՐԿՐԻ ՄԹՆՈԼՈՐՏՈՒՄ, ՈՐՆ ԱՂԱՎԱՂՈՒՄ է ԼՈՒՍԱՏՈՒՆԵՐԻ ՏԵՍԱՆԵԼԻ ԴԻՐՔԸ ԵՐԿՆԱՅԻՆ ՍՖԵՐԱՅԻ ՎՐԱ։ Երկնային լուսատուների լույսը անօդ տարածությունից մտնելով Երկրի մթնոլորտը, նրա մեջ բեկվում է։ Լույսի ճառագայթը որքան ավելի է մոտենում Երկրի մակերևույթին, այնքան նա օդի ավելի ու ավելի խիտ շերտերի է հանդիպում և հետզհետե ավելի ուժեղ բեկվելով այդ շերտերում՝ մոտենում է ուղղաձիգ ուղղության։ Հետևանքը լինում է այն, որ լույսի ճառագայթը Երկրի մթնոլորտում կորանում Է, ինչպես այդ ցույց է տրված նկ. 16-ում։ M կետում գտնվող դիտողը լուսատուն տեսնում է ոչ թե MA ուղղությամբ, այլ մի ուղղությամբ, որը բնորոշվում Է AM կորագծի շոշափողով, որի ուղղությամբ, ռեֆրակցիայի հետևանքով գալիս են ճառագայթները։ Եվ իսկապես, այն ուղղությունը, որով գիտողը տեսնում է լուսատուն, դա լուսատուից դեպի դիտողի աչքը եկող ճառագայթների ուղղությունն է, իսկ M կետում կորացված ճառագայթի ուղղությունը այդ կորագծի M կետում շոշափողի ուղղությունն է (մեր նկարում ճառագայթի ուղու կորացումը ցույց է տրված միայն մեկ ճառագայթի համար և այն էլ ակնառության համար չափազանցրած)։
[[Պատկեր:Astronomy_pic_016.png|350px|frameless|thumb|center]]
Այսպիսով, '''ռեֆրակցիայի հետևանքով լուսատուներն ավելի մոտ են երևում զենիթին, քան նրանք իրականում կան'''։ Հորիզոնի մոտ ռեֆրակցիան բարձրացնում է լուսատուն 35՛-ով և ավելի քիչ՝ երբ նա բարձր է գտնվում։
տարածությունը երկնային սֆերայի ձևով պտտվում է մի այնպիսի առանցքի շուրջը, որը զուգահեռ, է Երկրի պտտման առանցքին։ Երկնային սֆերայի պտտման CP առանցքը մենք անվանեցինք աշխարհի առանցք և այժմ տեսնում ենք, որ նա ամեն մի դիտողի համար զուգահեռ է Երկրի պտտման առանցքին։
[[Պատկեր:Astronomy_pic_017.png|250px|frameless|thumb|right]]
Քանի որ Բևեռային աստղը մեզնից չափազանց հեռու է գտնվում, ուստի CP գիծը և Երկրի պտտման առանցքը, որը զուգահեռ է նրան, ուղղված են դեպի Բևեռային աստղը։ Այն դիտողի համար, որ կարողանար տեղավորվել Երկրի կենտրոնում կամ նրա բևեռներում, Երկրի պտտման առանցքը և աշխարհի առանցքը միմյանց կհամընկնեին։
§ 21. ԲԵՎԵՌԻ ԲԱՐՁՐՈՒԹՅՈՒՆԸ ՀՈՐԻԶՈՆԻՑ ԵՎ ՏԵՂԻ ԱՇԽԱՐՀԱԳՐԱԿԱՆ ԼԱՅՆՈՒԹՈՒՆԸ։ '''Աշխարհի բևեռի անկյունային բարձրությունը հորիզոնից կամ, ավելի կարճ ասած, բևեռի բարձրությունը հավասար է դիտման վայրի աշխարհագրական լայնությանը։''' Դրանում կարելի է համոզվել, եթե նկ. 17-ի վրա հետևենք, թե ի՛նչպես կփոփոխվի PCN անկյունը (իսկ դրա հետ միասին՝ նաև PN աղեղը, այսինքն՝ բևեռի բարձրությունը), եթե C կետի դիտողը Երկրի հասարակածից սկսի շարժվել դեպի Երկրի բևեռը։ Այդպիսի շարժման դեպքում աշխարհի CP առանցքը կմնա ինքն իրեն զուգահեռ, իսկ հորիզոնի հարթության վրա ընկած CN գիծը PC գծի հետ ավելի ու ավելի մեծ անկյուն կկազմի։
[[Պատկեր:Astronomy_pic_018.png|250px|frameless|thumb|left]]
Դա ավելի պարզ կարելի է յուրացնել նկ. 18-ի օգնությամբ, որտեղ երկրագունդը պատկերված է տեղի միջօրեականի հարթության հատվածով։ M կետում գտնվող դիտողը աշխարհի P բևեռը կտեսնի աշխարհի առանցքի MP՛ ուղղությամբ, որը զուգահեռ է Երկրի TP առանցքին։ Երկրագունդը շոշափող հորիզոնի հարթությունը մեր գծագրի վրա կպատկերվի SMN ուղիղ գծով, որը M կետում շոշափում է երկրագունդը պատկերող շրջանը։ AQ Երկրի հասարակածն է, TZ ուղղաձիգ գիծն է կետում, ուստի և AMT անկյունը, ըստ § 9-ի, հանդիսանում է կետի աշխարհագրական φ լայնությունը։
''Միջին լայնություններում,'' օրինակ, ՍՍՌՄ-ում, աշխարհի առանցքը և երկնային հասարակածը թեքված են դեպի հորիզոնը, ուստի և աստղերի օրական ուղիները նույնպես թեքված են հորիզոնի նկատմամբ (նկ. 19 ա)։ Այն աստղերը, որոնք աշխարհի բևեռից հեռու են գտնվում ոչ ավելի, քան φ աստիճանով (այստեղ φ աշխարհագրական լայնությունն է), մայր չմտնող աստղեր են։ Իսկ այն աստղերը, որոնք բևեռից հեռու են գտնվում ավելի քան φ աստիճանով, ծագող և մայր մտնող աստղեր են։ Հարավային կիսագնդի աստղերի մի մասը, որոնք երկնային սֆերայում ընկած են ավելի հարավ (ցած), քան այն փոքր զուգահեռականը, որը զուգահեռ է հասարակածին և անցնում է S կետով (տե՛ս նկ. 19 ա), երբեք չեն ծագում՝ նրանք անտեսանելի են։
[[Պատկեր:Astronomy_pic_019.png|500px|frameless|thumb|center]]
''Երկրի հասարակածում'' աշխարհի առանցքը պառկած է հորիզոնի հարթության վրա և համընկնում է միջօրեի գծին, իսկ աշխարհի բևեռները՝ հյուսիսի և հարավի կետերին (նկ. 19 բ)։ Հասարակածը դառնում է հորիզոնին, ուղղահայաց և անցնում է Z, զենիթով։ Բոլոր աստղերի օրական ուղիներն ուղղահայաց են հորիզոնին և նրանցից յուրաքանչյուրը օրվա կեսի ընթացքում լինում է հորիզոնից վեր և մյուս կեսի ընթացքում՝ հորիզոնից ցած։ Լրիվ օրվա ընթացքում, եթե ցերեկն Արեգակը չխանգարեր, կարելի կլիներ տեսնել երկնքի երկու կիսագնդերի բոլոր աստղերը։ Այնտեղ չծագող աստղեր չկան, ինչպես չկան նաև մայր չմտնող աստղեր։ Մասնավորապես, մեզ ծանոթ Մեծ Արջը այնտեղ մայր մտնող համաստեղությունների թվին է պատկանում։
2) Լուսնի խավարումների ժամանակ Երկրի ստվերը, որ ընկնում է լուսնի վրա, միշտ կլորաձև ուրվանկար ունի։ Բոլոր մարմիններիդ միայն գունդն է, որ իր բոլոր դիրքերում կլոր ստվեր է գցում։
[[Պատկեր:Astronomy_pic_020.png|400px|frameless|thumb|center]]
[[Պատկեր:Astronomy_pic_021.png|500px|frameless|thumb|center]]
§ 24. ԵՐԿՐԻ ՉԱՓԵՐԸ ՈՐՈՇԵԼԸ։ '''Երկրի չափերի որոշումը կայանում է նրանում, որ մենք չափում ենք միջօրեականի աղեղը գծային միավորներով և աստիճաններով։''' Երկրագնդի միևնույն միջօրեականի վրա գտնվող երկու կետերի միջև որոշում են գծային հեռավորությունը, որը, ասենք, հավասար է n կիլոմետրի։ Աստղագիտական եղանակով որոշում են նաև այդ կետերի աշխարհագրական լայնությունների տարբերությունը (օրինակ, այդ կետերում Բևեռային աստղի բարձրության տարբերության միջոցով), որը, ենթադրենք, հավասար է m աստիճանի։ Այդ դեպքում <math>\frac{m}{360°}</math> քանորդը ցույց կտա, թե շրջանագծի ո՛ր մասն է իրենից ներկայացնում նրա այն աղեղը, որ գտնվում է մեր վերցրած երկու կետերի միջև։ Դրա հիման վրա գտնում են ամբողջ շրջանագծի երկարությունը կիլոմետրերով հետևյալ պարզ հարաբերության միջոցով.
§ 25. ԵՐԿՐԻ ՍԵՂՄՎԱԾՈՒԹՅՈՒՆԸ։ Երկրի տարբեր վայրերում կատարած չափումների միջոցով համոզվել են, որ Երկրի կորությունը հասարակածի մոտ ավելի մեծ է, քան բևեռներում (նկ. 22)։ Դա նշանակում է, որ '''Երկիրը գնդաձև չէ. նա բևեռների մոտ մի քիչ սեղմված է'''։ Երկրի բևեռային շառավիղը հասարակածային շառավղից կարճ է համարյա 21 կիլոմետրով, այսինքն՝ մոտավորապես հասարակածային շառավղի 1/300 չափով։ Երկրի ձևը ճշտվել է սովետական գիտնականների կողմից։
[[Պատկեր:Astronomy_pic_022.png|300px|frameless|thumb|right]]
Երկրի սեղմվածությունը հետևանք է այն կենտրոնախույս ուժի ազդեցության, որ զարգացնում է Երկիրն իր առանցքի շուրջը պտտվելու ժամանակ։ Դա կարելի է ցուցադրել դպրոցական կենտրոնախույս մեքենայի առանցքի վրա պտտեցնելով պողպատյա բարակ օղակապը։ Երկնային մարմնի սեղմվելն իր պտտվելու հետևանքով ընդհանուր կանոն է։ Օրինակ, Յուպիտեր և Սատուրն մոլորակները, որոնք իրենց առանցքի շուրջն ավելի արագ են պտտվում քան Երկիրը, ավելի շատ են սեղմված (Յուպիտերի սեղմվածությունը շատ լավ նկատվում է հեռադիտակով)։ Սեղմվածության հետևանքով Երկիրը գնդաձև չէ, այլ պտտման էլիպսոիդ։
Բայց միջօրեականի աղեղի գծային երկարությունը չափելու ժամանակ, մանավանդ եթե Երկրի չափերը ավելի մեծ ճշտությամբ որոշելու համար բավական երկար աղեղ վերցնելու լինենք, մենք մի շարք գործնական դժվարությունների կհանդիպենք. այդ աղեղի սկզբից մինչև նրա վերջավորությունը ճանապարհին կարող են ձորեր, լեռներ, ճահիճներ և այլ խոչընդոտներ հանդիպել։ Ուստի, միջօրեականի աղեղի երկարությունը և առհասարակ Երկրի մակերևույթի վրա մեծ տարածություններ չափելու համար (որոնք, մասնավորապես, հարկավոր են լինում աշխարհագրական քարտեզներ կազմելու համար) օգտվում են '''տրիանգուլյացիայի''' եղանակից։
[[Պատկեր:Astronomy_pic_023.png|180px|frameless|thumb|left]]
Տրիանգուլյացիան կայանում է հետևյալում։ Եթե հարկավոր է չափել միջօրեականի AA՛ աղեղը (նկ. 23), ընտրում են հարթ տարածության վրա ընկած AB գիծը և չափում նրա երկարությունը ամենայն հնարավոր ճշտությամբ։ Այդպիսի գիծը կոչվում է բազիս (հիմք)։ Բացի այդ, ընտրում են C կետը, որը երևում է և՛ A կետից, և՛ B կետից։ Այնուհետև անկյունաչափ գործիքի օգնությամբ չափում են A, B կետերի մոտ ընկած անկյունները և, բացի այդ, բազիսի և միջօրեականի AA՛ ուղղության միջև ընկած K անկյունը։ Ապա արդեն հաշվարկումների միջոցով գտնում են AC, BC կողմերի երկարությունը և C անկյան մեծությունը։ Դրանից հետո ընտրում են D կետը, որը երևում է և՛ C, և՛ B կետերից, և տեղավորվելով այդ կետերում, անկյունաչափ գործիքով չափում են BCD և CBD անկյունները։ Քանի որ CB գծի երկարությունն արդեն հաշված էր, ուստի այժմ նախորդի օրինակով կարելի է հաշվել CD և BD կողմերի երկարությունը, և բացի այդ, AB և AA՛ գծերով կազմված անկյունը։
Այսպիսով, '''տրիանգուլյացիան կայանում է նրանում, որ մեծ հեռավորությունները որոշվում են եռանկյունների օգնությամբ, որտեղ չափվում են միայն անկյունները և բազիսը, իսկ կողմերը որոշվում են հաշվարկումներով'''։ Այդ եղանակի անվանումը ծագել է լատիներեն «տրիանգուլյում» — եռանկյուն բառից։
[[Պատկեր:Astronomy_pic_024.png|240px|frameless|thumb|right]]
Տրիանգուլյացիայից օգտվում են ոչ միայն Երկրի չափերը որոշելու համար, այլև աշխարհագրական քարտեզներ կազմելիս, երբ պահանջվում է չափել մեծ հեռավորություններ։
Բերենք դրանցից երկու առավել ակնհայտ ապացույցներ.
[[Պատկեր:Astronomy_pic_025.png|180px|frameless|thumb|left]]
ա) ''Վայր ընկնող մարմինների խոտորումը դեպի արևելք։'' Պատկերացնենք մի խոր ուղղաձիգ AB հանքահոր, որը պտտվում է Երկրի հետ միասին (նկ. 25)։ Նրա մուտքր (A) պտտման ժամանակ գծային ավելի մեծ արագություն ունի, քան հիմքը (B), որովհետև նա ավելի հեռու է գտնվում պտտման կենտրոնից, տվյալ դեպքում երկրի օրական պտույտի առանցքից։ Հանքահորի մուտքի մոտ ընկած քարն այս դեպքում նույն արագությունը կունենա, ինչ և այդ մուտքը։ Հանքահորի մեջ ընկնելու դեպքում նա, իներցիայի շնորհիվ, կպահպանի այդ արագությունը։ Ընկնելով ցած և միաժամանակ պահպանելով իր դեպի արևելք շարժման (որովհետև Երկիրը պտտվում է արևմուտքից դեպի արևելք) ավելի մեծ արագությունը, քան հանքահորի հիմքի շարժման արագությունն է, քարն իր դեպի արևելք շարժման մեջ ավելի առաջ կանցնի հանքահորի հիմքից։ Քարը կընկնի ոչ թե Ճիշտ Երկրի կենտրոնի ուղղությամբ, այլ կշեղվի դեպի արևելք, որը չէր պատահի, եթե Երկիրը պտտվելիս չլիներ։ Երկրի հասարակածի վրա այդ խոտորումը ամենից մեծ է, իսկ բևեռներում հավասար է զրոյի։
Այս ձևի բազմաթիվ փորձերը ցույց են տալիս, որ դիտումները միանգամայն համապատասխանում են կատարած հաշվարկումներին. օրինակ, միջին լայնություններում 85 մ բարձրությունից վայր ընկնող քարը շեղվում է դեպի արևելք 10,5 մմ։
[[Պատկեր:Astronomy_pic_026.png|270px|frameless|thumb|right]]
բ) ''Ֆուկոյի ճոճանակը։'' Առաջին անդամ 1851 թ. ֆրանսիացի գիտնական Ֆուկոյի դրած փորձում կիրառվել է մի ճոճանակ, որը իրենից ներկայացնում էր մի շատ երկար ու բարակ լար, որի ծայրից կախված էր ծանր գունդ։ Հայտնի է, և այդ կարելի է ստուգել կենտրոնախույս մեքենայի վրա կատարած փորձով, որ ամեն մի այդպիսի ճոճանակ իր տատանումների հարթությունը պահպանում է առանց փոփոխության, թեկուզ ինչպես էլ պտտելու լինենք այն հենարանը, որից նա կախված է։ (ճոճանակի լարը երկար է վերցվում այն նկատառումով, որպեսզի փորձն ավելի ակնառու լինի, և ճոճանակը բավական երկար ժամանակ տատանելու անհրաժեշտությունից։)