Հետևաբար, քանի որ AI-ն և FK-ն մեդիալ մակերեսներ են և հավասար են LP-ի և PN-ի վրա կառուցված քառակուսիներին համապատասխանաբար, հետևաբար LP-ի և PN-ի վրա կառուցված քառակուսիները նույնպես մեդիալ են: Ուստի, LP-ն և PN-ն նույնպես մեդիալ ուղիղ գծեր են, որոնք համաչափելի են միայն քառակուսիներով: Եվ քանի որ AF-ի և FG-ի պարունակած ուղղանկյունը հավասար է EG-ի վրա կառուցված քառակուսուն, հետևաբար ինչպես AF-ն է EG-ի նկատմամբ, այնպես էլ EG-ն է FG-ի նկատմամբ [Տե՛ս «Տարրեր», 10.17]: Բայց ինչպես AF-ն է EG-ի նկատմամբ, այնպես էլ AI-ն է EK-ի նկատմամբ: Եվ ինչպես EG-ն է FG-ի նկատմամբ, այնպես էլ EK-ն՝ FK-ի նկատմամբ [Տե՛ս «Տարրեր», 6.1]:
Ուստի, EK-ն AI-ի և FK-ի միջին համեմատականն է:
Եվ MN-ն նույնպես միջին համեմատական է LM և NO քառակուսիներին [Տե՛ս «Տարրեր», 10.53]: Եվ AI-ն հավասար է LM-ին, և FK-ն՝ NO-ին: Այսպիսով, MN-ն նույնպես հավասար է EK-ին: Նաև DH-ն հավասար է EK-ին, իսկ LO-ն՝ MN-ին [Տե՛ս «Տարրեր», 1.43]: Այսպիսով, ամբողջ DK-ն հավասար է UVW գնոմոնին և NO-ին: Հետևաբար, քանի որ ամբողջ AK-ն հավասար է LM-ին և NO-ին, որոնցից DK-ն հավասար է UVW գնոմոնին և NO-ին, մնացյալ AB-ն նույնպես հավասար է TS-ին, որն էլ LN-ի վրա կառուցված քառակուսուն: Այսպիսով, LN-ի վրա կառուցված քառակուսին հավասար է AB մակերեսին: Այսպիսով LN-ն հավասար է AB քառակուսու մակերեսին, ու պնդում ենք, որ LN-ը մեդիալ ուղիղ գծի առաջին ապոտոմեն է:
Քանի որ EK-ն ռացիոնալ մակերես է և հավասար է LO-ին, ստացվում է, որ LO-ն՝ այսինքն LP և PN ուղիղ գծերի սահմանած ուղղանկյունը, նույնպես ռացիոնալ մակերես է: Միևնույն ժամանակ, արդեն ցույց էր տրված, որ NO-ն մեդիալ մակերես է: Այսպիսով, LO-ն անհամեմատելի է NO-ի հետ: Քանի որ LO-ի և NO-ի հարաբերությունը նույնն է, ինչ LP-ի և PN-ի հարաբերությունը, ապա LP-ն և PN-ն ևս անհամեմատելի են երկարությամբ: Սակայն դրանք երկուսն էլ մեդիալ ուղիղ գծեր են, որոնք համաչափելի են միայն քառակուսիներով և սահմանում են ռացիոնալ մակերես: Հետևաբար, LN-ը մեդիալ ուղիղ գծի առաջին ապոտոմենն է և միևնույն ժամանակ AB մակերեսի քառակուսի արմատը:
Ուստի AB մակերեսի քառակուսի արմատը մեդիալ ուղիղ գծի առաջին ապոտոմենն է, ինչը և պետք էր ապացուցել: