[[Պատկեր:ElementsBook2-Propostion4.png|center|200px]]
AB ուղիղը կամայականորեն բաժանված է C կետում: Պնդումն այն է, որ AB-ի քառակուսին հավասար է AC և CB ուղիղների քառակուսիների և AC և CB ուղիղների արտադրյալի քառակուսու գումարին:
AB ուղիղը կամայականորեն բաժանված է C կետում: Պնդումն այն է, որ AB-ի քառակուսին հավասար է AC և CB ուղիղների քառակուսիների և AC և CB ուղիղների արտադրյալի քառակուսու գումարին:ADEB քառակուսին կազմված է AB կողմեվ [Պնդում 1.46] և գծված է BD անկյունագիծը։ C կետով գծված է CF ուղիղը, որը զուգահեռ է AD կամ BE կողմին, իսկ G կետվ գծված է HK ուղիղը, որը զուգահեռ է AB կամ DE կողմին [Պնդում 1.31]: Քանի որ CF-ը զուգահեռ է AD-ին և BD-ն հատում է դրանք, CGB արտաքին անկյունը հավասար է ADB ներքին անկյանը [Պնդում 1.29]: ADB անկյունը հավասար է ABD անկյանը, քանի որ BA և AD կողմերը հավասար են [Պնդում 1.5]: Հետևաբար, CGB անկյունը հավասար է GBC անկյանը, իսկ BC կողմը հավասար է CG կողմին [Պնդում 1.6]: Նաև CB-ն հավասար է GK կողմին, իսկ CG-ն հավասար է KB կողմին [Պնդում 1.34]: Այսպիսով, GK-ն հավասար է KB կողմին, իսկ CGKB պատկերը հավասարակողմ է։ Այն նաև ուղղանկյուն է, քանի որ CG և BK կողմերը զուգահեռ են և CB-ն հատում է դրանք, KBC և GCB անկյունները հավասար են և ուղիղ [Պնդում 1.29]։ KBC-ն ուղիղ անկյուն է։ BCG-ն նույնպես ուղիղ անկյուն է, ինչպես նաև CGK և GKB անկյունները [Պնդում 1.34]. Հետևաբար, CGKB ուղղանկյուն է։ Քանի որ CGKB-ն նաև հավասարակողմ, հետևաբար այն քառակուսի է։ Նույն կերպով, HF-ը նույնպես քառակուսի է [Պնդում 1.34]։ Հետևաբար HF-ը և KC-ն համապատասխանաբար AC և CB կողմերով կառուցված քառակուսիներ են և AG ուղղանկյունը հավասար է GE ուղղանկյանը [Պնդում 1.43]։ AG-ն ուղղանկյուն է՝ կազմված AC և CB կողմերով, և GC կողմը հավասար է CB կողմին։ GE ուղղանկյունը հավասար է AC և CB կողմերով կազմված ուղղանկյանը։ Հետևաբար AG և GE ուղղանկյունները հավասար են AC և CB կողմերով կազմված ուղղանկյան կրկնապատիկին։ HF-ը և CK-ը AC և CB կողմերով կազմված քառակուսիներ են։ Այսպիսով, չորս պատկերները՝ HF, CK, AG և GE, հավասար են AC և BC կողմերի քառակուսիների գումարին և AC և CB կողմերով կազմված ուղղանկյան կրկնապատիկին։ Բայց այս չորս պատկերները հավասար են ամբողջ ADEB պատկերին, որը AB կողմով կազմված քառակուսի է։ Հետևաբար, AB քառակուսին հավասար է AC և CB քառակուսիների և AC և CB կողմերով կազմված ուղղանկյան կրկնապատիկին։
Այսպիսով, եթե ուղիղը կամայականորեն բաժանված է մասերի, ապա ամբողջ ուղղով կազմված քառակուսին հավասար է նրա մասերի քառակուսիների գումարին և այդ մասերի արտադրյալի կրկնապատիկին։ Սա այն էր, ինչ պետք էր ապացուցել։