[[Պատկեր:Nkar_3.png|280px|thumb|left|Նկ․ 3]]
::::Դիցուք՝ եթե AB հատվածը բաժանենք արտաքին և միջին հարաբերությամբ C-ում, այնպես որ AC մեր մեծ հատվածն է, և AC-ն կիսենք D-ում, ապա <math>BD^2 = 5\cdot DC^2</math> ''(Նկ․ 3)'':
::::Դիտարկենք AE անկյունագծով քառակուսին, ինչպես ցույց է տրված ''Նկ․ 3''-ում։ Քանի որ <math>DC = \frac{AC}{2}</math>, ապա <math>AC^2 = 4\cdot DC^2</math> (RS անկյունագծով քառակուսու մակերեսը հավասար է 4 անգամ FG անկյունագծով քառակուսու մակերեսին)։ Եվ AB և BC կողմերով ուղղանկյան մակերեսը հավասար է AC կողմով քառակուսու մակերեսին ''(Սահմ․ 6․3, Պնդ․ 6․17)'', որն էլ հավասար է CBES ուղղանկյան մակերեսին, հետևաբար վերջինս հավասար է RS անկյունագծով քառակուսու մակերեսին։ Այսպիսով CBES ուղղանկյան մակերեսը հավասար է 4 անգամ FG անկյունագծով քառակուսու մակերեսին։ Ինչպես գիտենք <math>AD = DC</math>,և <math>HK = KF</math>, հետևաբար HL և GF անկյունագծերով քառակուսիների մակերեսները հավասար են։ Այսպիսով <math>GK = KL </math>, այնպես ինչպես <math>MN = NE</math>։ Քանի որ MF անկյունագծով ուղղանկյայն մակերեսը հավասար է FE և CG անկյունագծերով ուղանկյունների մակերեսներին, հետևաբար վերջիններս նույնպես հավասար են: Եթե СN անկյունագծով ուղղանկյունն ավելացնենք երկուսին էլ, ապա կարող ենք ասել, որ գնոմոն OPQ հավասար է CE անկյունագծով ուղղանկյան մակերեսին։ Եվ ինչպես ցույց էր տրվել վերևում, CE անկյունագծով ուղղանկյան մակերեսը հավասար է 4 անգամ FG անկյունագծով քառակուսու մակերեսին, հետևաբար գնոմոն OPQ-ն նույնպես հավասար է FG անկյունագծով քառակուսու մակերեսի քառապատիկին։ Հետևաբար գնոմոն OPQ հավասար է 5 անգամ FG-ի մակերեսին։ Բայց մենք գիտենք, որ գնոմոն OPQ-ի և FG անկյունագծով քառակուսու մակերեսի գումարը հավասար է DN անկյունագծով քառակուսու մակերեսին։ Իսկ վերջինիս մակերեսը հավասար է <math>DB^2</math>, իսկ GF անկյունագծով քառակուսու մակերեսը հավասար է <math>DC^2</math>: Այսպիսով <math>DB^2 = 5\cdot DC^2</math>, ինչը և պահանջվում էր ապացուցել։
== Պնդում 4 ==
[[Պատկեր:Nkar_4.png|280px|thumb|left|Նկ․ 4]]
::::Դիցուք՝ AB հատվածը բաժանված է արտաքին և միջին հարաբերությամբ С-ում, որտեղ AC-ն մեծ հատվածն է ''(Նկ․ 4)''։ Ես պնդում եմ, որ <math>AB^2 + BC^2 = 3\cdot CA^2</math>:
Դիտարկենք քառակուսի ADEB ''(Նկ․ 4)'': Քանի որ AB մասնատված է արտաքին և միջին հարաբերությամբ С-ում, որտեղ AC-ն մեծ հատվածն է, ապա <math>AB \cdot BC = AC^2</math> AB և BC կողմերով ուղղանկյան մակերեսը AC կողմով քառակուսու մակերեսին (Սահմ․ 6․3, Պնդ․ 6․17)։ AK անկյունագծով ուղղանկյունը հավասար է AB և BC կողմերով ուղղանկյանը, և HG անկյունագծով քառակուսին հավասար է AC կողմով քառակուսուն, հետևաբար AK և HG անկյունագծով ուղղանկյունների մակերեսները հավասար են։ Քանի որ AF և FE անկյունագծերով ուղղանկյունները հավասար են (Պնդ․ 1․43), և CBKF քառակուսին ընդհանուր է, հետևաբար ABKH և CBEG ուղանկյունները հավասար են։ Այսպիսով, AK և CE անկյունագծերով ուղղանկյունների մակերեսների գումարը հավասար է AK անկյունագծով ուղղանկյան մակերեսի կրկնապատիկին։ Քանի որ AK և CE անկյունագծերով ուղղանկյունների մակերեսների գումարը հավասար է գնոմոն LMN-ի և CK անկյունագծով քառակուսու մակերեսների գումարին, ապա գնոմոն LMN և CK-ն հավասար է AK անկյունագծով ուղղանկյան մակերեսի կրկնապատիկին: Եվ ինչպես ցույց էր տրվել վերևում, վերջինս հավասար է նաև HG անկյունագծով քառակուսուն, հետևաբար գնոմոն LMN-ը