Եթե երկու զուգահեռ ուղիղների վրա վերցրած պատահական կետերից երկուսը միացնենք, ապա ստացված ուղիղը, որը անցնում է այդ կետերով, կլինի նույն հարթության մեջ, ինչ երկու զուգահեռ ուղիղները։
[[Պատկեր:Նկար-1.png]]
AB և CD երկու զուգահեռ ուղիղներ են, իսկ E և F կամայական կետեր են համապատասխանաբար AB և CD ուղիղներից։ Ուղիղը, որը միացնում է E և F կետերը, գտնվում է նույն հարթության մեջ, ինչ զուգահեռ ուղիղները։
Եթե երկու ուղիղներ զուգահեռ են, և նրանցից մեկը ուղիղ անկյուն է կազմում ինչ որ հարթության հետ, ապա մյուս ուղիղը նույնպես ուղղահայաց կլինի այդ հարթությանը։
[[Պատկեր:Նկար-2.png]]
AB և CD երկու զուգահեռ ուղիղներ են, և նրանցից մեկը՝ AB, լինի ուղղահայաց դիտարկվող հարթությանը։ Ապա, մյուսը՝ CD, նույնպես կլինի ուղղահայաց նույն հարթությանը։
Հետևաբար, CD ուղիղը կանգնած է ուղղանկյուն երկու ուղիղների՝ DE և DB-ի հետ, որոնք հատվում են D կետում։ Այսպիսով, CD ուղիղը նաև ուղղահայաց է DE և DB ուղիղներով անցնող հարթությանը ([Պնդում 11․4])։
Եվ քանի որ DE և DB ուղիղներով անցնող հարթությունը դիտարկվող հարթությունն է, CD ուղիղը ուղղահայաց է նաև դիտարկվող հարթությանը։
''Հետևաբար, եթե երկու ուղիղներ զուգահեռ են, և դրանցից մեկը ուղղահայաց է որևէ հարթության, ապա մյուսը նույնպես կլինի ուղղահայաց նույն հարթությանը։ Որն էլ անհրաժեշտ էր ցույց տալ։''
''Հետևաբար, եթե միմյանց միացված երկու ուղիղները (համապատասխանաբար) զուգահեռ են միմյանց միացած երկու ուղիղներին, որոնք ընկած չեն նույն հարթության մեջ ինչ որ սկզբնական երկու ուղիղները, ապա դրանք կպարունակեն հավասար անկյուններ։ Որը անհրաժեշտ էր ցույց տալ։''
Կետից հարթությանը ուղղահայաց ուղղի կառուցումը։
[[Պատկեր:Նկար-11.png]]
A կետը դիտարկվող կետն է: Այսպիսով, պահանջվում է ուղղահայաց ուղիղ գծել A կետից հարթությանը: Պատահական BC ուղիղ գծենք դիտարկվող հարթությունում, և AD ուղիղը գծենք BC-ին ուղղահայաց A կետից [Պնդ. 1.12]: Հետևաբար, եթե AD ուղիղը նույնպես ուղղահայաց է դիտարկվող հարթությանը, ապա տեղի կունենա այն, ինչ նախատեսված էր:Իսկ, եթե ոչ, D կետից՝ դիտարկվող հարթության մեջ BC ուղղին ուղահայաց DE ուղիղը գծենք [Պնդ. 1.11], և AF ուղիղը գծենք A կետից DE ուղղին ուղղահայաց վերջիններս կհատի DE ուղղին F կետում[Պնդ. 1.12], և F կետով անցնող GH ուղիղը գծենք, որը զուգահեռ է BC ուղղին [Պնդ. 1.31]:
Եվ քանի որ BC-ն ուղիղ անկյուն է կազմում DA և DE ուղիղներից յուրաքանչյուրի հետ,հետևաբար BC-ն, ուղղահայաց է EDA հարթությանը [Պնդ. 11.4]: Իսկ GH ուղիղը զուգահեռ է BC-ին։ Եթե երկու ուղիղները զուգահեռ են, և դրանցից մեկը ուղղահայաց է ինչ-որ հարթությանը, ապա մյուսը նույնպես կլինի նույն հարթությանն ուղղահայաց[Պնդ. 11.8]:Այսպիսով, GH ուղիղը նույնպես ուղղահայաց է ED և DA ուղիղներով անցնող հարթությունը։
Այսպիսով, GH ուղիղը ուղիղ անկյուն է կազմում իրեն միացած բոլոր ուղիղների հետ, որոնք նույնպես ED և AD ուղիղներով անցնող հարթության մեջ են [Սահմ. 11.3]: Եվ AF-ն, որը գտնվում է ED և AD ուղիղներով անցնող հարթության մեջ, միացված է այդ ուղղին: Այսպիսով, GH և AF ուղիղներըուղղահայաց են: Հետևաբար, AF-ն ուղղահայաց է HG ուղղին: AF-ն նույնպես ուղղահայաց է DE ուղղին: Այսպիսով, AF-ն ուղղահայաց է GH և DE ուղիղներից յուրաքանչյուրին: Եվ եթե ուղիղը կազմում են ուղիղ անկյուն երկու հատվող ուղիղների հետ, ապա այն ուղղահայաց կլինի այդ ուղիղներով անցնող հարթությանը [Պնդ. 11.4]: Այսպիսով, FA-ն ուղղահայաց է ED և GH ուղիղներով անցնող հարթությանը: Իսկ ED-ի և GH-ի ուղիղներով անցնող հարթությունը հենց դիտարկվող հարթությունն էր: Այսպիսով, AF ուղիղը ուղղահայաց է դիտարկվող հարթությանը:
''Այսպիսով, A կետով անցնող AF ուղիղը ուղղահայաց է դիտարկվող հարթությանը: Ինչը հենց պահանջվում էր կառուցել:''
''Հետևաբար AD ուղիղը A կետով անցնող և հարթությանը ուղղահայաց ուղիղ է։ Ինչը պահանջվում էր կառուցել։
''
Երկու տարբեր ուղիղներ չեն կարող անցնել մի կետով և միևնույն ժամանակ ուղղահայաց լինել նույն հարթության նույն կողմին։
[[Պատկեր:Նկար-13.png]]
Ենթադրենք հնարավոր է, ուրեմն երկու ուղիղներ AB և AC տեղադրենք միևնույն A կետում՝ դիտարկվող հարթությանը ուղղահայաց: Գծենք BA և AC ուղիղներով անցնող հարթություն: Այսպիսով, այն կհատի դիտարկվող հարթությունը A կետով անցնող DAE ուղղով[Պնդ. 11.3]: Այսպիսով, AB, AC և DAE ուղիղները ընկած են մեկ հարթության մեջ, և քանի որ CA-ն ուղղահայաց է դիտարկվող հարթությանը, այդպիսով այն նաև ուղղահայաց է դիտարկվող հարթության մեջ գտնվող բոլոր ուղիղներին[Պնդ. 11.3]: DAE-ն, որը գտնվում է դիտարկվող հարթության մեջ, միացված է դրան։Հետևաբար, CAE անկյունը ուղիղ է: Հանգունորեն BAE անկյունը նույնպես ուղիղ է։ Այսպիսով, CAE անկյունը հավասար է BAE անկյանը: Եվ նրանք մեկ հարթության մեջ են։ Ինչը անհնար է։
Հարթությունները որոնք միևնույն ուղղին ուղղահայաց են ապա միմյանց զուգահեռ են։
[[Պատկեր:Նկար-14.png]]
AB-ն կամայական ուղիղ է որը ուղղահայաց է CD և EF հարթություններին։ Ցույց տանք, որ այդ հարթությունները զուգահեռ են։
Հակառակ դեպքում հարթությունները կհատվեն։ Նրանք կհատվեն մի ընդհանուր ուղղով [Պնդ. 11.3]:Ենթադրենք GH-ն հարթությունների ընդհանուր ուղիղն է։ Կամայական K կետ վերցնենք GH ուղղի վրա: Միացնենք AK և BK հատվածները։
AB-ն ուղղահայաց է EF հարթությանը և BK ուղղին։Հետևաբար, ABK անկյունը ուղիղ է: Նույն պատճառներով BAK անկյունը նույնպես ուղիղ է։ Այսպիսով, ABK եռանկյան ABK և BAK երկու անկյունը ուղիղ են: Ինչը անհնար է [Պնդ. 1.17]:Հետևաբար, CD և EF հարթությունները, չեն հատվում՝ CD և EF հարթությունները զուգահեռ են [Սահմ. 11.8]:
''Այսպիսով, Հարթությունները որոնք միևնույն ուղղին ուղղահայաց են ապա այդ հարթությունները զուգահեռ են: Ինչ պահանջվում էր ցույց տալ:''
Եթե երկու հատվուղ ուղիղները զուգահեռ են ուրիշ հատվող ուղիղների, որոնք նույն հարթության մեջ չեն, ապա այդ հատվող ուղիղներով անցնող հարթությունները զուգահեռ են:
[[Պատկեր:Նկար-15.png]]
AB և BC հատվող ուղիղները, զուգահեռ են երկու հատվող ուղիղների՝ DE և EF որոնք չեն գտնվում նույն հարթության մեջ։ Ցույց տանք, որ AB, BC և DE, EF ուղիղներով անցնող հարթությունները չեն հատվում:BG-ն, B կետից DE և EF ուղիղներով անցնող հարթությանը ուղղահայաց ուղիղ է [Պնդ. 11.11],վերջինիս հատում է հարթությունը G կետում : GH-ն G-ի կետով անցնող և ED ուղղին զուգահեռ ուղիղ է, GK ուղիղը զուգահեռ EF-ին [Պնդ. 1.31]:Եվ քանի որ BG-ն ուղղահայաց է DE և EF ուղիղներով անցնող հարթությանը, այդպիսով այն նաև ուղղահայաց կլինի բոլոր այն ուղիղներին որոնք պատկանում են այդ հարթությանը[Սահմ. 11.3]: Եվ GH և GK ուղիղներից յուրաքանչյուրը, որոնք գտնվում են DE և EF ուղիղներով անցնող հարթության մեջ, միացված են BG ուղղին: Այսպիսով, BGH և BGK անկյունները ուղիղ են: Եվ քանի որ BA-ն զուգահեռ է GH-ին [Պնդ. 11.9], GBA և BGH անկյունները ուղիղ են[Պնդ. 1.29]: Անկյուն BGH նույնպես ուղիղ է։Անկյուն GBA-ն ուղիղ է: GB-ն ուղղահայաց է BA-ին: Այսպիսով, նույն կերպ GB-ն ուղղահայաց է BC-ին։ Հետևաբար GB ուղիղը ուղղահայաց է՝ BA և BC ուղիղներին,այսպիսով GB-ն ուղղահայաց է BA և BC ուղիղներով անցնող հարթությանը [Պնդ. 11.4]:Իսկ հարթությունները, որոնց նույն ուղիղը ուղղահայաց է, զուգահեռ են [Պնդ 11.14]: Այսպիսով, AB և BC ուղիղներով անցնող հարթությունը զուգահեռ է DE և EF ուղիղներով անցնող հարթությանը:
''Հանգունորն, եթե միմյանց միացված երկու ուղիղները զուգահեռ են միմյանց միացված երկու ուղիղների, որոնք նույն հարթության մեջ չեն, ապա այդ ուղիղներով անցնող հարթությունները զուգահեռ են: Ինչ պահանջվում էր ցույց տալ:''
Եթե երկու զուգահեռ հարթություններ հատվում են ինչ-որ հարթությամբ, ապա առաջացած ուղիղները զուգահեռ են։
[[Պատկեր:Նկար-16.png]]
Երկու զուգահեռ հարթություններ AB և CD հատվում են EFGH հարթությամբ։ Իսկ EF և GH ուղիղները հատումից հառաջացած ուղիղներն են։ Ցույց տանք որ EF և GH ուղիղները զուգահեռ են։ Հակառակ դեպքում, EF-ն և GH-ը կհատվեն կա՛մ F, H, կա՛մ E, G-ի ուղղությամբ: Ենթադրենք հատվում են K կետում՝ F, H-ի ուղղությամբ: Եվ քանի որ EFK ուղիղը ընկած է AB հարթության մեջ, հետևաբար EFK ուղղի բոլոր կետերը ընկած են այդ հարթության մեջ [Պնդ. 11.1]։ Իսկ K-ն EFK ուղղին պատկանող կետերից մեկն է։ Հետևաբար, K-ն AB հարթությանը պատկանող կետ է: Նույն պատճառներով K-ն նաև CD-ին պատկանող կետ է։ Այսպիսով, AB և CD հարթությունները հատվում են։ Բայց նրանք չեն հատվում, քանի որ ի սկզբանե ենթադրվում էր զուգահեռությունը: Այսպիսով, EF և GH ուղիղները, F, H ուղղությամբ, չեն հատվում:Հանգունորեն, մենք կարող ենք ցույց տալ, որ EF և GH ուղիղները, E, G ուղղությամբ, նույնպես չեն հատվում [Սահ. 1.23]:Ստացվում է, որ EF-ը զուգահեռ է GH-ին:
''Այսպիսով, եթե երկու զուգահեռ հարթություններ հատված են ինչ-որ հարթությամբ, ապա դրանց ընդհանուր հատվածները զուգահեռ են:Ինչ պահանջվում էր ցույց տալ։''
Եթե երկու ուղիղներ կտրվեն զուգահեռ հարթություններով, ապա առաջացած հատվածները կհարաբերվեն հավասարապես:
[[Պատկեր:Նկար-17.png]]
Երկու ուղիղներ AB և CD հատվում են GH, KL և MN զուգահեռ հարթություններով A, E, B և C, F, D կետերում համապատասխանաբար: Ցույց տանք, որ ուղիղ AE հարաբերում է EB-ին, այնպես ինչպես CF-ն FD-ին: