Changes

Տարերք/Գիրք 2

Ավելացվել է 2440 բայտ, 19:38, 4 Դեկտեմբերի 2024
== Պնդում 2 ==
== '''Պնդում 3''' ==
== '''Պնդում 4''' ==
== '''Պնդում 5''' ==
== Pages 56-68 ==
 
== Պնդում 6† ==
 
Հետևաբար, քանի որ AC-Ն և CB-Ն հավասար են, AL և CH անկյունագծերով ուղղանկյունները նույնպես հավասար են [Պնդում 1.36]։ CH անկյունագծով ուղղանկյունն էլ հավասար է HF անկյունագծովին [Պնդում 1.43], որից հետևում է, որ AL անկյունագծով ուղղանկյունը հավասար է HF անկյունագծովին։ Երկու կողմերին էլ ավելացնենք CM անկյունագծով ուղղանկյունը։ Կստացվի, որ AM անկյունագծով ուղղանկյունը և NOP գնոմոնը հավասար են։ Իսկ AM անկյունածով ուղղանկյունը կարող ենք կառուցել AD և DB կողմերով։ DM-ն ու DB-ն նույնպես հավասար են, հետևաբար NOP գնոմոնը հավասար է AD-ով և DB-ով կառուցված ուղղանկյանը։ Երկու կողմին էլ ավելացնենք LG անկյունագծով քառակուսին, որը հավասար է BC հիմքով քառակուսուն։ Այսպիսով՝ AD և DB կողմերով ուղղանկյան և CB հիմքով քառակուսու գումարը հավասար է NOP գնոմոնի և LG անկյունագծով քառակուսու գումարին։ Սակայն NOP գնոմոնն ու LG անկյունագծով քառակուսին համարժեք են ողջ CEFD-ին, որը ընկած է CD-ի վրա։ Հետևում է, որ AD-ով և DB-ով կառուցված ուղղանկյան և CB հիմքով քառակուսու գումարը հավասար է CD հիմքով քառակուսուն։
Հետևաբար, հատվածը կիսելու և դրան ուղիղ գծով այլ հատված կցելու արդյունքում՝ ստացված ողջ հատվածով և ավելացված մասով կառուցված ուղղանկյան և հատվածի կեսով կառուցված քառակուսու գումարը հավասար է նախնական հատվածի կեսի և կցված հատվածի գումարով ստացված նոր հատվածով կառուցված քառակուսուն։
† Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ (2a + b) b + a^2 = (a + b)^2։
 
 
== Պնդում 7† ==
Հատվածը կամայական կետում հատելիս՝ ստացված հատվածներից պատահականորեն ընտրված մեկի և ողջ հատվածի քառակուսիների գումարը հավասար է ողջ և նախապես ընտրված հատվածներով կառուցված ուղղանկյան մակերեսի կրկնապատիկի և հատման արդյունքում առաջացած մյուս հատվածի երկարության քառակուսու գումարին։