Changes

Մեխանիկական թեորեմների մեթոդը

2 bytes removed, 10 Դեկտեմբեր
/* Պնդում XIII */
(քանի որ սա ակնհայտ է [Ապոլոնիոս, Կոն. I, 11]): Հետևաբար µν : νλ = κη² : λσ²։
µν-ի վրա կառուցենք հարթություն, որը զուգահեռ է ∈η-ին։ Այն կկտրվի ամբողջ պրիզմայից կտրած պրիզմայի մեջ ուղիղանկյուն եռանկյունով, որի մի կողմը µν-ն է, իսկ մյուսը՝ γδ հարթության վրա գտնվող ուղիղ գիծը, որն ուղղահայաց է γδ-ին՝ ν կետում և հավասար է գլանի առանցքին։ Հիպոթենուզը կլինի կտրված հարթության մեջ։ Այն կկտրվի գլանից կտրված մասից (մասն, որը կտրել է ∈η հարթությունը և քառակուսու հակառակ կողմը γδ-ի նկատմամբ) ուղիղանկյուն եռանկյունով, որի մի կողմը µξ-ն է, իսկ մյուսը՝ գլանի մակերեսին գտնվող գիծը, որը ուղղահայաց է κν հարթությանը:․․․․․Եվ բոլոր եռանկյուններին պրիզմայում : բոլոր Բոլոր եռանկյունները գլանի հատվածում = բոլոր ուղիղ գծերին δη զուգահեռագծում : բոլոր ուղիղ գծերը պարաբոլի և ∈η ուղիղի միջև։ Եվ պրիզման կազմված է պրիզմայում գտնվող եռանկյուններից, գլանի հատվածը՝ գլանի հատվածում գտնվող եռանկյուններից, δη զուգահեռագիծը՝ զուգահեռագծում գտնվող ուղիղ գծերից, իսկ պարաբոլի հատվածը՝ պարաբոլի և ուղիղ ∈η-ի միջև կտրված գծերից։ Հետևաբար, պրիզմա : գլանի հատված = δη զուգահեռագիծ : ∈ζη հատված, որը սահմանափակված է պարաբոլով և ուղիղ ∈η-ով։
Բայց զուգահեռագիծ δη = 3/2 պարաբոլի և ուղիղ ∈η-ի միջև գտնվող հատվածին (ինչպես ցույց է տրվել ավելի վաղ հրապարակված աշխատանքում), հետևաբար նաև պրիզման հավասար է գլանի հատվածի մեկուկես անգամին։
26
edits