== Պնդում 36 ==
Նույն հիմքով և նույն զուգահեռ ուղիղների միջև կառուցված զուգահեռագծերը հավասար են միմյանց։
[[Պատկեր:ElementsBook1ABCD-Propostion36.png|center|200px]]ն և EFGH-ն զուգահեռագծեր են, որոնք կառուցված են հավասար BC և FG հիմքերով և AH և BG նույն զուգահեռ ուղիղների միջև։ Պնդումն այն է, որ ABCD և EFGH զուգահեռագծերը հավասար են։
[[Պատկեր:ElementsBook1-Propostion36.png|center|200px]]
Գծված են BE և CH ուղիղները։ Քանի որ BC-n հավասար է FG-ին և FG-ն էլ հավասար է EH-ին [Պնդում 1.34], հետևաբար, BC-ն հավասար է EH-ին։ Նրանք նաև զուգահեռ են և EB ու HC ուղիղները միացնում են դրանք։ Բայց ուղիղները, որոնք միացնում են հավասար և զուգահեռ ուղիղներ նույն կողմի վրա, իրենք էլ հավասար են և զուգահեռ [Պնդում 1.33] (հետևաբար EB-ն և HC-ն նույնպես հավասար են և զուգահեռ)։ Հետևաբար, EBCH-ը զուգահեռագիծ է [Պնդում 1.34] և հավասար է ABCD-ին: Այն ունի նույն BC հիմքը, այնպես ինչպես ABCD-ն և գտնվում է նույն BC և AH զուգահեռների միջև, այնպես ինչպես ABCD-ն [Պնդում 1.35]։ Նույն պատճառով EFGH-ն հավասար է նույն EBCH զուգահեռագծին [Պնդում 1.34]։ Այսպիսով, ABCD զուգահեռագիծը հավասար է EFGH զուգահեռագծին։
Հետևաբար, նույն հիմքով և նույն զուգահեռ ուղիղների միջև կառուցված զուգահեռագծերը հավասար։ հավասար են միմյանց։ Սա այն էր, ինչ պետք էր ապացուցել։
== Պնդում 37 ==