Տարերք/Գիրք 3
հեղինակ՝ էվկլիդես |
Բովանդակություն
pages 69-80
Սահմանումներ
1. Հավասար են համարվում այն շրջանները, որոնց տրամագծերը կամ կենտրոնից շրջանագիծ ընկած հեռավորությունները հավասար են (շառավղերը հավասար են)։
2. Հատվածը համարվում է շրջանագծի շոշափող, եթե այն շրջանագծին հասնելիս և շարունակվելիս՝ չի հատում այն։
3. Իրար շոշափող են համարվում այն շրջանները, որոնք միմյանց հասնելիս՝ մեկը մյուսին չեն հատում։
4. Շրջանագծում հատվածները կենտրոնից նույն հեռավորությունը կունենան, եթե կենտրոնից նրանց տարված ուղղահայացները հավասար լինեն։
5. Շրջանագծում հատվածներից կենտրոնից ավելի հեռու է համարվում այն մեկը, որին կենտրոնից տարված ուղղահայացը ավելի երկար է։
6. Շրջանի սեգմենտը այն պատկերն է, որը պարունակում են հատվածն ու շրջանագիծը։
7. Սեգմենտի անկյունը այն այնկյունն է, որը պարունակում են հատվածն ու շրջանագիծը։
8. Սեգմենտի միջի անկյունը այն այնկյունն է, որը պարունակում են շրջանագծի վրա վերցված կետից տարված երկու հատվածները, որոնք միանում են այն հատվածի գագաթներին որը սեգմենտի հիմքն է։
9. Աղեղի վրա ընկած անկյունը այն անկյունն է, որին կից հատվածները հատում են շրջանագիծը՝ իրենց մեջ առնելով դրա որոշ հատված։
10. Շրջանի սեկտորը այն պատկերն է, որն ընկած է շրջանի կոնտրոնում կառուցված անկյանը կից հատվածների և դրանցով կտրված շրջանագծի ներսում։
11. Շրջանի սեգմենտները համարվում են նման, երբ կա՛մ ընկած են հավասար անկյունների վրա, կա՛մ պարունակում են հավասար անկյուններ։
Պնդում 1
Գտնել տրված շրջանի կենտրոնը։
Դիցուք՝ տրված է ABC շրջանը։ Պահանջվում է գտնել ABC շրջանի կենտրոնը։ ABC շրջանով կառուցենք կամայական AB հատված և հավասար կիսենք այն D կետում [Պնդում 1․9]։ AB-ին ուղղահայաց՝D կետով կառուցենք DC-ն [Պնդում 1․11]։ E կետով էլ կառուցենք CD-ն։ CE-ն հավասար կիսենք F կետով [Պնդում 1․9]։ Ես պնդում էմ, որ F-ը ABC շրջանի կենտրոնն է։ Եթե այդպես չէ, ապա ենթադրենք, որ կենտրոնը G-ն է և կառուցենք GA, GD և GB հատվածները։ Եվ քանի որ AD-ն ու DB-ն հավասար են, DG էլ՝ ընդհանուր, AD և DG, BD և DG համապատասխանաբար հավասար են։ Հավասար են նաև GA և GB հիմքերը, քանի որ երկուսն էլ շառավիղներ են։ Հետևաբար, ADG անկյունը հավասար է GDB անկյանը [Պնդում 1․8]։ Երբ միմյանց ուղղահայաց հատվածները իրար հավասար կից անկյուններ են կազմում, նշանակում է, որ այդ անկյունները ուղիղ անկյուններ են [Սահմանում 1․10]։ Հետևում է, որ GDB-ն և FDB-ն ուղիղ անկյուններ են և հետևաբար, հավասար են միմյանց։ Սակայն անկյուններից մոկը մյուսից մեծ է, ինչը հնարավոր չէ։ Ստացվում է, որ G-ն շրջանի կենտրոնը չէ։ Նույն կերպ կարող ենք ցույց տալ նաև, որ ցանկացաց կետ բացի F-ից, ABC շրջանի կենտրոնը չէ։
Հետևաբար, F-ը ABC շրջանի կենտրոնն է։
Հետևանք
Եթե շրջանում հատվածը այլ հատվածի ուղիղ անկյան տակ հավասար կիսում է, ապա շրջանի կենտրոնը գտնվում է նախնական հատվածի վրա։ Սա հենց այն էր, ինչ պետք էր ցույց տալ։
Պնդում 2
Շրջանագծի վրա վերցված կամայական կետերը միացնելիս ստացված հատվածը ընկած է շրջանի ներսում։
Դիցուք՝ տրված է ABC շրջանը։ Շրջանագծի վրա ընտրենք կամայական A և B կետեր։ Ես պնդում եմ, որ A և B կետերը միացնող հատվածը ընկած է շրջանի ներսում։ Ենթադրենք, որ դա ճիշտ չէ, և այն ընկած է շրջանից դուրս՝ ինչպես AEB պատկերում։ Գտնենք ABC շրջանի կենտրոնը [Պնդում 3․1], և ենթադրենք, որ այն D-ն է։ Կառուցենք DA-ն, DB-ն և DFE-ն։ Հետևաբար, քանի որ DA-ն ու DB-ն հավասար են, DAE և DBE անկյունները նույնպես հավասար են [Պնդում 1․5]։ Քանի որ կառուցել ենք DAE եռանկյան AEB կողմը, DEB անկյունը DAE-ից մեծ է [Պնդում 1․16]։ DAE-ն էլ հավասար է DEB-ին [Պնդում 1․5]։ Հետևաբար, DEB-ն DBE-ից մեծ է։ Ավելի մեծ անկյունն ընկած է ավելի մեծ կողմի վրա [Պնդում 1․19]։ Ստացվում է, որ DB-ն DE-ից մեծ է։ DB-ն ու DF-ն էլ հավասար են։ Հետևում է, որ DF-ը DE-ից մեծ է, ինչը հնարավոր չէ։ Այսպիսով՝ A և B կետերը միացնող հատվածը չի ընկնի շրջանի մեջ։ Նույն կերպ կարող ենք ցույց տալ նաև, որ այն շրջանագծի վրա նույնպես չի ընկնի։ Հետևաբար, կընկնի շրջանի ներսում։
Այսպիսով՝ շրջանագծի վրա վերցված կամայական կետերը միացնելիս ստացված հատվածը ընկած է շրջանի ներսում։ Սա հենց այն էր, ինչ պետք էր ցույց տալ։
Պնդում 3
Եթե շրջանի կենտրոնով անցնող հատվածը հավասար է կիսում է այլ հատվածի, որը կենտրոնով չի անցնում, ապա հատումը տեղի է ունենում ուղիղ անկյան տակ։ Եվ ընդհակառակը, եթե հատումը տեղի է ունենում ուղիղ անկյան տակ, ապա կենտրոնով անցնող հատվածը մյուսիս հավասար կիսում է։ Դիցուք՝ տրված է ABC շրջանը, որում կենտրոնով անցնող CD հատվածը F կետով մեջտեղից կիսում է կենտրոնով չանցնող AB հատվածը։ Ես պնդում եմ, որ CD-ն հատում է AB-ն ուղիղ անկյան տակ։ Գտնենք ABC շրջանի կենտրոնը [Պնդում 3.1], նշանակենք այն E-ով և կառուցեք EA-ն ու EB-ն։ Քանի որ AF-ը հավասար է FB-ին, FE-ն էլ ընդհանուր է, AFE ուղղանկյան 2 կողմերը հավասար են BFE եռանկյան երկու կողմերին։ EA և EB հիմքերը հավասար են։ Հետևաբար, AFE անկյունը հավասար է BFE-ին [Պնդում 1․8]։ Եվ երբ մեկ հատվածի վրա կառուցված այլ հատված ստեղծում է հավասար կիս անկյուններ, նշանակում է, որ այդ անկյուններից յուրաքանչյունը ուղիղ անկյուն է [Պնդում 1․10]։ Ստացվում է, որ AFE և BFE անկյունները ուղիղ են։ Հետևաբար, կենտրոնով անցնող և AB-ն հավասար կիսող CD հատվածը հատում է AB-ն ուղիղ անկյան տակ։
Ստացվենց, որ CD-ն հատում է AB-ն ուղիղ անկյան տակ։ Ես պնդում եմ նաև, որ այն AB-ն մեջտեղից կիսում է։ Նույնն է ասել, որ AF-ն ու FB-ն հավասար են։ Օգտվենք նույն գծագրից։ Քանի որ EA-ն ու EB-ն հավասար են, EAF և EBF անկյունները նույնպես հավասար են [Պնդում 1․5]։ Ուղիղ անկյուն AFE-ն էլ հավասար է BFE ուղիղ անկյանը։ Հետևաբար, EAF-ն ու EFB-ը երկու եռանկյուններ են, որոնց երկու անկյուններն ու մեկ կողմը հավասար են, այդ կողմը EF-ն է, որը ընդհանուր է։ Հետևում է, որ մնացյալ կողմերը նույնպես համապատասխանաբար հավասար կլինեն [Պնդում 1․26]։ Ստացվում է, որ AF-ն ու FB-ն հավասար են։ Այսպիսով՝ եթե շրջանի կենտրոնով անցնող հատվածը հավասար է կիսում է այլ հատվածի, որը կենտրոնով չի անցնում, ապա հատումը տեղի է ունենում ուղիղ անկյան տակ։ Եվ ընդհակառակը, եթե հատումը տեղի է ունենում ուղիղ անկյան տակ, ապա կենտրոնով անցնող հատվածը մյուսիս հավասար կիսում է։ Սա այն էր, ինչ պահանջվում էի ցույց տալ։
Պնդում 4
Շրջանի կենտրոնով չանցնող երկու հատվածներ իրար հատելու դեպքում, միմյանց հավասար չեն կիսում։ Դիցուք՝ ունենք ABCD շրջանը, որում կենտրոնով չանցնող AC և BD հատվածները հատում եմ միմյանց E կետում։ Ես պնդում եմ, որ նրանք միմյանց հավասար չեն կիսում։ Ենթադրենք, որ այդ հատվածները կիսում են միմյանց այնպես, որ AE-ն ու EC-ն և BE-ն ու ED-ն հավասար են։ Գտնենք ABCD շրջանի կենտրոնը [Պնդում 3․1], նշանակենք F կետով և կառուցենք FE-ն։ Հետևաբար, քանի որ կենտրոնով անցնող FE-ն հատում է կենտրոնով չանցնող AC-ին, ապա հատումը տեղի է ունենում ուղիղ անկյան տակ [Պնդում 3․3]։ Ստացվում է, որ FEA-ն ուղիղ անկյուն է։ Եվ կրկին, քանի որ FE հատվածը մեջտեղից հատում է BD-ն, ապա հատումը տեղի է ունենում ուղիղ անկյան տակ [Պնդում 3․3]։ Ստացվում է, որ FEB-ն ուղիղ անկյուն է։ Ցույց էինք տվել նաև, որ FEA-ն էլ է ուղիղ անկյուն։ Հետևաբար, FEA-ն ու FEB-ն հավասար են․ փոքրը՝ մեծին, ինչը հնարավոր չէ։ Հետևանար, AC-ն ու BD-ն միմյանց հավասար չեն կիսում։
Այսպիսով՝ շրջանի կենտրոնով չանցնող երկու հատվածներ իրար հատելու դեպքում, միմյանց հավասար չեն կիսում։ Սա այն էր, ինչ պահանջվում էի ցույց տալ։
Պնդում 5
Երկու միմյանց հատող շրջանների կենտրոնները չեն համընկնում։
Դիցուք՝ ABC և CDG շրջանները հատում են միմյնաց B և C կետերում։ Ես պնդում եմ, որ շրջանների կենտրոնները չեն համընկնում։ Ենթադրենք, որ E-ն ընդհանուր կենտրոնն է և կառուցենք EC-ն ու EFG-ն, որը կամայականորեն երկու շրջաններով էլ կանցնի։ Քանի որ E-ն ABC շրջանի կենտրոնն է, EC-ն և Efճը հավասար են։ Քանի որ E-ն CDG շրջանի կենտրոնն էլ է, EC-ն և EG-ն նույնպես հավասար են։ Ցույց էինք տվել նաև, որ EC ու EF հատվածները նույնպես հավասար են։ Հետևաբար, EF-ն ու EG-ն հավասար են․ փոքրը՝ մեծին, ինչը հնարավոր չէ։ Ստացվում է, որ E-ն ABC և CDG շրջանների ընդհանուր կենտրոնը չէ։ Այսպիսով՝ երկու միմյանց հատող շրջանների կենտրոնները չեն համընկնում։
Պնդում 6
Երկու միմյանց շոշափող շրջանների կենտրոնները չեն համընկնում։
Դիցուք՝ ABC և CDE շրջանները շոշափում են միմյնաց C կետում։ Ես պնդում եմ, որ շրջանների կենտրոնները չեն համընկնում։ Ենթադրենք, որ F-ը ընդհանուր կենտրոնն է և կառուցենք FC-ն ու FEB-ն, որը կամայականորեն երկու շրջաններով էլ կանցնի: Հետևաբար, քանի որ F-ը ABC-ի կենտրոնն է, FC-ն ու FB-ն հավասար են։ Քանի որ F-ը CDE-ի կենտրոնն էլ է, ապա FC-ն ու FE-ն նունպես հավասար են։ Ցույց էինք տվել նաև, որ FC-ն ու FB-ն հավասար են։ Հետևաբար, FE-ն ու FB-ն ևս հավասար հատվածներ են․ փոքրը՝ մեծին, ինչը հնարավոր չէ։ Ստացվում է, որ F-ն ABC և CDE շրջանների ընդհանուր կենտրոնը չէ։ Այսպիսով՝ երկու միմյանց շոշափող շրջանների կենտրոնները չեն համընկնում։
Պնդում 7
Պնդում 8
Պնդում 9
Եթե շրջանի ներսում վերցված կետից մինչ շրջանագիծ ընկած երկուսից ավել հատվածներ հավասար եմ, ապա այդ կետը շրջանի կենտրոնն է։ Դիցուք՝ տրված է ABC շրջանը, շրջանի ներսում՝ D կետը և D-ից մինչ շրջանագիծ ձգվող երկուսից ավել հատված՝ DA, DB և DC։ Ես պնդում եմ, որ D-ն ABC շրջանի կենտրոնն է։
Կառուցենք AB-ն ու BC-ն և մեջտեղից կիսենք դրանք համապատասխանորեն E և F կետերում [Պնդում 1.10]։ Կառուցենք նաև ED-ն ու FD-ն և շարունակենք դրանք մինչ G, K, H և L կետերին հասնելը։ Հետևաբար, քանի որ AF-ն ու EB-ն հավասար են, ED-ն էլ՝ ընդհանուր, AE և ED հատվածները համախատասխանաբար հավասար են BE և ED հատվածներին։ DA և DB հիմերը նույնպես հավասար են։ Հետրում է, որ անկյուն AED-ն հավասար է BED անկյանը [Պնդում 1.8]։ AED և BED անկյունները ուղիղ անկյուններ են [Պնդում 1.10]։ Ստացվում է, որ GK-ն ուղիղ անկյան տակ մեջտեղից հատում է AB-ն։ Եվ եթե շրջանագծում մի հատված ուղիղ անկյան տակ հատում և մեջտեղից կիսում է այլ հատվածի, ապա շրջանի կենտրոնը ընկած է սկզբնական հատվածի վրա [Պնդում 3.1 հետևանք]։ Հետրևաբար շրջանի կենտրոնը GK-ի վրա է։ Նույն պատճառներով՝ ABC շրջանի կենտրոնն ընկած է HL հատվածի վրա։ GK և HL հատվածները D-ից բացի այլ ընդհանուր կետ չունեն։ Հետևաբար, D-ն ABC շրջանի կենտրոնն է։ Այսպիսով՝ եթե շրջանի ներսում վերցված կետից մինչ շրջանագիծ ընկած երկուսից ավել հատվածներ հավասար եմ, ապա այդ կետը շրջանի կենտրոնն է։ Սա այն էր, ինչ պահանջվում էր ցույց տալ։
Պնդում 10
Շրջանները չեն հատվում երկուսից ավել կետերում։ Ենթադրենք, որ ABC և DEF շրջանները հատվում են երկուսից ավել՝ B, G, F և H կետերում։ Կառուցենք BH և BG հատվածները և համապատասխանորեն հավասար կիսենք դրան K և L կետերում։ K և L կետերով համապատասխանորեն կառուցենք KC և LM հատվածներն այնպես, որ BH-ի և BG-ի հետ ուղիղ անկյուններ կազմեն, [Պնդում 1.11], որից հետո շարունակենք այդ հատվածները մինչ A և E կետերը։
pages 80-105
pages 106-108
և ԴՑ (գիծ) գումարած (քառակուսի) ՖԲ-ի վրա հավասար է ՖԲ-ի և ԲԴ-ի վրա (քառակուսիների գումարին): Թող ՖԲ-ի վրա (քառակուսին) հանված լինի երկուսից: Արդյունքում մնացած (ուղղանկյունը), որը պարունակվում է ԱԴ-ով և ԴՑ-ով, հավասար է դիպչող գծի (ԴԲ-ի) վրա (քառակուսուն): Եվ թող ԴՑԱ-ն չլինի շրջանագծի ԱԲԳ կենտրոնի միջով, և գտնվի կենտրոնը՝ Ե-ն, և Ե կետից դեպի ԱՑ ուղղահայաց գիծ տարված լինի ԵԶ [Պնդ. 1.12]: Եվ միացվեն ԵԲ, ԵՑ և ԵԴ: (Անկյունը) ԵԲԴ (հավասար է) ուղիղ անկյան [Պնդ. 3.18]: Եվ քանի որ ԵԿ կենտրոնի միջով անցնող ուղիղ գիծը հատում է մեկ այլ ԱՑ ուղիղ գիծ, որը կենտրոնի միջով չէ, ուղիղ անկյան տակ, ապա այն նաև բաժանում է կեսերի [Պնդ. 3.3]: Այսպիսով, ԱՖ հավասար է ՖՑ: Եվ քանի որ ԱՑ ուղիղ գիծը բաժանվում է կետ Ֆ-ում, թող ավելացվի ՑԴ-ն: Արդյունքում (ուղղանկյունը), որը պարունակվում է ԱԴ- ով և ԴՑ-ով, գումարած (քառակուսին) ՖՑ-ի վրա, հավասար է ՖԴ-ի վրա (քառակուսուն) [Պնդ. 2.6]: Թող ՖԵ-ի վրա (քառակուսին) ավելացվի երկուսին: Արդյունքում (ուղղանկյունը), որը պարունակվում է ԱԴ- ով և ԴՑ-ով, գումարած (քառակուսիների գումարը) ՑՖ- ի և ՖԵ-ի վրա, հավասար է ՖԴ-ի և ՖԵ-ի վրա (քառակուսիների գումարին): Բայց ԵՑ-ի վրա (քառակուսին) հավասար է ՑՖ-ի և ՖԵ-ի վրա (քառակուսիների գումարին): Քանի որ [անկյունը] ԵՖՑ [հավասար է] ուղիղ անկյան [Պնդ. 1.47]: Եվ ԵԴ-ի վրա (քառակուսին) հավասար է ԴՖ-ի և ՖԵ-ի վրա (քառակուսիների գումարին) [Պնդ. 1.47]: Այսպիսով, (ուղղանկյունը), որը պարունակվում է ԱԴ-ով և ԴՑ-ով, գումարած ԵՑ-ի վրա (քառակուսին), հավասար է ԵԴ-ի վրա (քառակուսուն): Եվ ԵՑ-ը (հավասար է) ԵԲ-ին: Այսպիսով, (ուղղանկյունը), որը պարունակվում է ԱԴ- ով և ԴՑ-ով, գումարած ԵԲ-ի վրա (քառակուսին), հավասար է ԵԴ-ի վրա (քառակուսուն): Եվ ԵԲ-ի և ԲԴ-ի վրա (քառակուսիների գումարը) հավասար է ԵԴ-ի վրա (քառակուսուն): Քանի որ ԵԲԴ անկյունը ուղիղ անկյուն է [Պնդ.1.47]: Այսպիսով, (ուղղանկյունը), որը ստացվում է ԱԴ-ով և ԴՑ-ով, գումարած ԵԲ-ի վրա (քառակուսին), հավասար է ԵԲ-ի և ԲԴ-ի վրա (քառակուսիների գումարին): Թող ԵԲ-ի վրա (քառակուսին) հանվի երկուսից: Արդյունքում մնացած (ուղղանկյունը), որը պարունակվում է ԱԴ-ով և ԴՑ-ով, հավասար է ԲԴ-ի վրա (քառակուսուն):Այսպիսով, եթե որոշ կետ վերցվի շրջանի սահմաններից դուրս, և երկու ուղիղ գիծ ուղղվի այնտեղից դեպի շրջան, որոնցից մեկը կտրում է շրջանը, իսկ մյուսը դիպչում է դրան, ապա (ուղղանկյունը), որը պարունակվում է շրջանը կտրող ամբողջ ուղիղ գծի և դրա արտաքին հատվածի միջև, հավասար կլինի դիպչող գծի վրա քառակուսուն: Սա հենց այն է, ինչ պետք էր ցույց տալ:
Պնդում 37 Եթե կետ վերցվի շրջանից դուրս, և այդ կետից դեպի
շրջան տարվեն երկու ուղիղ, որոնցից մեկը հատում է շրջանը, իսկ մյուսը՝ շոշափում, ապա (ուղղանկյունը), որը ամբողջ հատողի և դրա արտաքին հատվածի միջև է, հավասար կլինի հանդիպող գծի քառակուսուն։
Թող կետ Դ վերցված լինի ԱԲՑ շրջանից դուրս, և թող Դ կետից երկու ուղիղ գծեր՝ ԴՑԱ և ԴԲ, ուղղվեն դեպի ԱԲՑ շրջան։ Թող ԴՑԱ գիծը կտրի շրջանը, իսկ ԴԲ գիծը հանդիպի (շրջանին)։ Եվ թող ԱԴ և ԴՑ գծերով պարունակվող (ուղղանկյունը) հավասար լինի ԴԲ-ի վրա (քառակուսուն)։ Ասում եմ, որ ԴԲ-ն դիպչում է ԱԲՑ շրջանին։ Թող ԴԵ գիծը նկարած լինի՝ դիպչելով ԱԲՑ շրջանագծին [Պնդ․ 3.17], և թող գտնված լինի ԱԲՑ շրջանի կենտրոնը, որը գտնվում է Ֆ կետում։ Թող միացված լինեն ՖԵ, ՖԲ և ՖԴ գծերը։ (Անկյունը) ՖԵԴ, հետևաբար, ուղիղ անկյուն է [Պնդ․ 3.18]։ Եվ քանի որ ԴԵ գիծը դիպչում է ԱԲՑ շրջանագծին, իսկ ԴՑԱ գիծը կտրում է այն, ապա ԱԴ և ԴՑ գծերով պարունակվող (ուղղանկյունը) հավասար է ԴԵ-ի վրա (քառակուսուն) [Պնդ․ 3.36]։ Նույնպես, ԱԴ և ԴՑ գծերով պարունակվող (ուղղանկյունը) հավասար էր ԴԲ-ի վրա (քառակուսուն)։ Հետևաբար, ԴԵ-ի վրա (քառակուսին) հավասար է ԴԲ-ի վրա (քառակուսուն)։ Այսպիսով, ԴԵ-ն հավասար է ԴԲ-ին։ Եվ ՖԵ-ն նույնպես հավասար է ՖԲ- ին։ Այսպիսով, երկու ուղիղ գծեր՝ ԴԵ և ԵՖ, հավասար են երկու ուղիղ գծերին՝ ԴԲ և ԲՖ (համապատասխանաբար)։ Նրանց հիմքը՝ ՖԴ-ն, ընդհանուր է։ Այսպիսով, ԴԵՖ անկյունը հավասար է ԴԲՖ անկյունին [Պնդ․ 1.8]։ Եվ ԴԵՖ անկյունը ուղիղ անկյուն է։ Այսպիսով, ԴԲՖ անկյունը նույնպես ուղիղ անկյուն է։ Եվ ՖԲ գիծը, որը շարունակված է, տրամագիծ է, իսկ (ուղիղ գիծը), որը անցկացված է տրամագծի ծայրակետին ուղիղ անկյան տակ, դիպչում է շրջանին [Պնդ․ 3.16, լրացում]։ Այսպիսով, ԴԲ-ն դիպչում է ԱԲՑ շրջանին։ Նույնը կարելի է ցույց տալ, նույնիսկ եթե կենտրոնը պատահաբար գտնվի ԱՑ ուղիղ գծի վրա։ Այսպիսով, եթե որոշ կետ վերցվի շրջանից դուրս, և այդ կետից դեպի շրջան ուղղվեն երկու ուղիղ գիծ, որոնցից մեկը կտրում է շրջանը, իսկ մյուսը հանդիպում է դրան, և եթե կտրող (ուղիղ գծի) ամբողջ երկարությամբ և դրա արտաքին հատվածով
պարունակվող (ուղղանկյունը), որը գտնվում է շրջանի կոր մակերեսի միջև, հավասար է հանդիպող գծի վրա (քառակուսուն), ապա հանդիպող (ուղիղ գիծը) կդիպչի շրջանին։ Սա հենց այն է, ինչ պետք էր ցույց տալ։