Մասնակից:NaneMambreyan

Գրապահարան-ից

Տեսություն 46

Ռացիոնալ թվի քառակուսային արմատի և միջնականի գումարը կարելի է բաժանել դրան պատկանող հատվածների) միայն մեկ կետում։†

45-46.png

Ենթադրենք ԱԲ-ն ռացիոնալ թվի քառակուսային արմատի և միջնականի գումարն է, որը բաժանվել է Ց կետում, այնպես, որ ԱՑ և ՑԲ հատվածների մակերեսները քառակուսիները) անհամաչափելի են, այնպես, որ ԱՑ և ՑԲ հատվածների քառակուսիների գումարը միջնական է և հավասար է ԱՑ և ՑԲ ռացիոնալ երկարություններով հատվածներով կառուցված ուղղանկյան մակերեսի կրկնապատիկին: Այն է, ԱԲ հատվածը այս կերպ հնարավոր չէ բաժանել այլ կետով: Ենթադրենք, ԱԲ-ն հնարավոր է Դ կետով ևս բաժանել այնպես, որ ԱԴ և ԴԲ-ի քառակուսիները ևս անհամաչափելի են, այսպիսով, ԱԴ և ԴԲ հատվածների երկարությունների քառակուսիների գումարը հավասար է միջնականին և ԱԴ և ԴԲ ռացիոնալ հատվածներով կազմված ուղղանկյան կրկնապատկին: Այսպիսով, քանի որ ինչ որ քանակության և ԱՑ, ՑԲ հատվածները պարունակող ուղղանկյան կրկնակի մակերեսի արտադրյալը հավասար չէ ԴԲ, ԱԴ հատվածնեով կազմված ուղղանկյան մակերեսին, հետևաբար ԱԴ և ԴԲ հատվածների քառակեւսիների գումարը ևս հավասար չէ ԱՑ և ՑԲ հատվածների թառակուսիների գումարին: Եվ ԱՑ, ՑԲ հատվածներով կազմված ուղղանկյան մակերեսի կրկնապատիկը ինչ-որ ռացիոնալ թվով մեծ է ԱՑ, ՑԲ հատվածներով կազմված ուղղանկյան մակերեսի կրկնապատկից: Հետևաբար, ԱԴ և ԴԲ քառակուսիների գումարը ևս ինչ-որ ռացիոնալ թվով արտահայտվող մակերեսով մեծ է ԱՑ և ՑԲ քառակուսիների գումարից, չնայած որ երկուսն էլ միջնականներ են: Այսպիսի բան անհնարին է: Այսպիսով, ռացիոնալ թվի քառակուսային արմատի և միջնականի գումարը չի կարող բաժանվել բաղկացուցիչ մասերի մեկ այլ կետում: Այն կարող է այդպես բաժանվել միայն մեկ կետում, որն էլ և պահանջվում էր ցույց տալ:


† Այլ կերպ ասած` s, \; \frac{q\left[\sqrt{1 + k^2} + k\right]}{2 (1 + k^2)} + \frac{q\left[\sqrt{1 + k^2} - k\right]}{2 (1 + k^2)} = \frac{q\left[\sqrt{1 + k'^2} + k'\right]}{2 (1 + k'^2)} + \frac{q\left[\sqrt{1 + k'^2} - k'\right]}{2 (1 + k'^2)}

ունի միայն մեկ արմատ, այն է: k′ = k.