Changes

Տարերք/Գիրք 2

Ավելացվել է 5 բայտ, 8 Դեկտեմբեր
/* Պնդում 1 */
2. Ցանկացած զուգահեռագիծ պատկերում նրա անկյունագծի շուրջ (վերցված) ցանկացած զուգահեռագիծ իր երկու լրացումների հետ միասին կոչվում է գնոմոն։
== Պնդում 1 <ref>Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ <math>a (b + c + d + ... ) = a b + a c + a d + ...</math></ref>==
Այսպիսով, BH ուղղանկյունը հավասար է BK, DL և EH ուղղանկյունների գումարին: Ավելին, BH-ն ուղղանկյուն է, որը ձևավորված է A և BC ուղիղներով, քանի որ այն պարփակված է GB և BC ուղիղների միջև միջև, իսկ BG ուղիղը հավասար է A ուղղին: BK ուղղանկյունը ձևավորված է A և BD ուղիղներով, քանի որ այն պարփակված է GB և BD ուղիների միջև, իսկ BG ուղիղը հավասար է A ուղղին: Նմանապես, DL ուղղանկյունը ձևավորվում է A և DE ուղիղներով, քանի որ DK ուղիղը (հավասար է BG-ին) հավասար է A-ին: Վերջապես, EH ուղղանկյունը ձևավորված է A և EC ուղիղներով: Այսպիսով, A և BC ուղիներով կազմած ուղղանկյունը հավասար է A և BD, A և DE, A և EC ուղիղներվ կազմած ուղղանկյունների գումարին:
Այսպիսով, եթե կան երկու ուղիղներ, և դրանցից մեկը բաժանված է կամայական թվով մասերի, ապա այս երկու ուղիղ գծերով կազմված ուղղանկյունը հավասար է չկտրված գծի և մասերից յուրաքանչյուրի կազմած ուղղանկյունների գումարին։ Ահա այն ինչ պահանջվում էր ապացուցել։
 
† Այս պնդումը հետևյալ հանրահաշվական նույնության երկրաչափական տարբերակն է՝ <math>a (b + c + d + ... ) = a b + a c + a d + ...</math>
== Պնդում 2 ==