Changes
/* Պնդում 1 */
Անհրաժեշտ է կառուցել հավասարակողմ եռանկյուն այդ AB ուղիղ գծի վրա:
Թող գծվի BCD շրջանը՝ կենտրոն A-ով և AB շառավղով [Հոդված Աքսիոմա 3], և կրկին թող գծվի ACE շրջանը՝ կենտրոն B-ով և BA շառավղով [Հոդված Աքսիոմա 3]: Եվ թող գծվեն CA և CB ուղիղ գծերը, որտեղ շրջանակները հատվում են միմյանց, դեպի A և B կետերը (համապատասխանաբար) [Հոդված Աքսիոմա 1]:
Քանի որ A կետը CDB շրջանի կենտրոնն է, AC հավասար է AB-ին [Սահմանում 1.15]: Կրկին, քանի որ B կետը CAE շրջանի կենտրոնն է, BC հավասար է BA-ին [Սահմանում 1.15]: Սակայն, նաև ցույց է տրվել, որ CA հավասար է AB-ին: Այսպիսով, CA-ն և CB-ն երկուսն էլ հավասար են AB-ին: Իսկ այն բաները, որոնք հավասար են նույն բանին, նույնպես հավասար են միմյանց [Համընդհանուր սկզբունք 1]: Այսպիսով, CA-ն հավասար է նաև CB-ին: Այսպիսով, երեք (ուղիղ գծերը) CA, AB և BC հավասար են միմյանց:
Այսպիսով, ABC եռանկյունը հավասարակողմ է և կառուցված է տրված AB սահմանափակ ուղիղ գծի վրա: Դա հենց այն էր, ինչ անհրաժեշտ էր անել:
== Պնդում 2 ==