Changes
/* Պատմական տեղեկություններ հանրահաշվի մասին */
Անհայտը Դիոֆանտը անվանում է «արիթմոս» (թիվ), անհայտի երկրորդ աստիճանը՝ «դյունամիս» (այդ բառն ունի բազմաթիվ նշանակություններ՝ ուժ, հզորություն, ունեցվածք, աստիճան և այլն<ref>Արաբերեն լեզվով «դյունամիս» տերմինը թարգմանված է եղել «մալ», բառով, որը նշանակում է «ունեցվածք»։ Արևմտաևրոպական մաթեմատիկոսները 12-րդ դարում «մալ» տերմինը թարգմանել են լատինական լեզվով հավասարարժեք census բառի։ Քառակուսի» («квадрат») տերմինը գործառության մեջ մտավ միայն 10-րդ դարում։</ref>)։ Երրորդ աստիճանը Դիոֆանտը անվանում է «կյուբոս» (խորանարդ), չորրորդը՝ «դյունամոդյունամիս», հինգերորդը՝ «դյունամոկյուբոս», վեցերորդը՝ «կյուրոկյուբոս»։ Այդ մեծութքունները նա նշանակում է համապատասխան անվանումների սկզբնատառերով (''ար'', ''դյու'', ''կյու'', ''դդյու'', ''դկյու'', ''կկյու'')։ Հայտնի թվերը անհայտներից տարբերելու համար, ուղեկցվում է «մո» (մոնա - միավոր) նշանակումով։ Գումարումը ամենևին չի նշանակվում, հանման համար կա կրճատ նշանակում, հավասարությունը նշանակվում է «իս» (իսոս - հավասար)։
Ո՛չ բաբելացիները, ո՛չ հույները չեն դիտարկել բացասական թվերը։ ''3 ար 6 մո իս 2 ար 1 մո (\(3x+6=2x+1\))'' հավասարմանը Դիոֆանտն անվանում է «անտեղի» («неуместным») , անդամները հավասարման մի մասից մյուսը տեղափոխվելով, Դիոֆանտն ասում է, գումարելին դառնում է հանելի, իսկ հանելին՝ գումարելի։
'''Չինաստան։''' Մեր ժամանակներից 2000 տարի առաջ չինական գիտնականները լուծում էին առաջին աստիճանի հավասարումները և նրանց սիստեմները, ինչպես նաև քառակուսի հավասարումները։ Նրանց հայտնի են եղել բացասական և իռացիոնալ թվերը։ Քանի որ չինական գրության մեջ յուրաքանչյուր նշան պատկանում է որևէ հասկացողության, ապա չինական հանրահաշվի մեջ չէր կարող լինել «կրճատ» նշանակումներ։