'''Բացասական թվեր։''' 13-16֊րդ դարերում բացասական թվերը եվրոպացիների կողմից դիտարկվում էին միայն բացառիկ դեպքերում։ Խորանարդ հավասարումների լուծման հայտնագործումից հետո հանրահաշվի մեջ բացասական թվերը աստիճանաբար քաղաքացիական իրավունք են նվաճում, թեև նրանց և անվանում էին «սուտ»։ 1629 թվին Ժիրարը (Ֆրանսիա) տվեց բացասական թվերի, այժմ հանրահայտնի երկրաչափական պատկերման եղանակը։ Քսան տարի անց բացասական թվերը ընդհանուր տարածում գտան։
'''Կոմպլեքս թվեր։''' Կոմպլեքս թվերի (III, 28 և III, 34) ներմուծումը նույնպես կապված էր խորանարդ հավասարումների լուծման հայտնագործման հետ։
Եվ մինչ այդ հայտնագործումը \(x^2+q=px\) քառակուսի հավասարումը լուծելիս հաճախ հարկ էր լինում հանդիպել այն դեպքին, երբ պահանջվում էր քառակուսի արմատ հանել \(\left\(\frac{p}{2}\right)^2-1\) արտահայտությունից, որտեղ \(\left\(\frac{p}{2}\right)^2\)֊ն փոքր է քան \(q\)֊ն։ Բայց այդպիսի դեպքում եզրակացնում էին, որ հավասարումը լուծումներ չունի։
Նոր (կոմպլեքս) թվերի ներմուծման մասին այն ժամանակ (երբ նույնիսկ բացասական թվերը «սուտ» էին համարվում) խոսք անգամ չէր կարող լինել։ Բայց Տարտալի կանոնով խորանարդ հավասարումները լուծելիս պարզվում է, որ առանց կեղծ թվերի նկատմամբ գործողություններ կատարելու հնարավոր չէ ստանալ ''իրական արմատ''։
Այդ բացատրենք ավելի մանրամասնորեն։ Ըստ Տարտալի կանոնի
\[x^3=px+q\]
Հավասարման արմատները ներկայացվում են՝
\[x=\sqrt[3]{u}+\sqrt[3]{v}\]
արտահայտությամբ, որտեղ \(u\)-ն և \(v\)-ն հետևյալ սիստեմի լուծումներն են։
\[u + v=q,\qquad uv=\left(\frac{p}{3}\right)^3\]
== Երկրաչափություն ==