::::Դիցուք՝ եթե <math>AB^2 = 5\cdot AC^2</math> ''(Նկ․ 2)'' և СВ շարունակենք, այնպես, որ <math>СD = 2\cdot AC</math>, ապա CD-ն բաժանվում է արտաքին և միջին հարաբերությամբ, որտեղ մեծ հատվածը CB է։
::::Դիտարկենք AB և CD կողմերով քառակուսիները՝ ALFB և СKGD ''(Նկ․ 2)'': Տանենք AF անկյունագիծը։ Շարունակենք FB հատվածը և հատենք KG-ի հետ E-ում: Քանի որ <math>AB^2 = 5\cdot AC^2<\/math>, հետևաբար AF անկյունագծով քառակուսու մակերեսը հավասար է 5 անգամ AH անկյունագծով քառակուսու մակերեսին։ Այսպիսով գնոմոն <math>MNO = 4\cdot AH<\/math>: Քանի որ <math>DC = 2\cdot CA<\/math>, հետևաբար <math>DC^2 = 4\cdot AC^2<\/math>, կամ նույնն է ինչ ասենք, որ СG անկյունագծով քառակուսու մակերեսը հավասար է 4 անգամ AH անկյունագծով քառակուսու մակերեսին։ Հետևաբար գնոմոն <math>MNO = CG<\/math> անկյունագծով քառակուսու մակերեսին (HB, HF, HL անկյունագծերով ուղղանկյունների մակերեսները հավասար են CDGK-ի մակերեսին): Եվ քանի որ <math>DC = 2\cdot CA<\math>, <math>DC = CK<\math>, <math>AC = CH<\/math> ապա <math>KC = 2\cdot CH</math> և KB անկյունագծով ուղղանկյան մակերեսը հավասար է 2 անգամ BH անկյունագծով ուղղանկյան մակերեսին ''(Պնդ․ 6․1)'' և քանի որ LH և HB անկյունագծերով ուղղանկյունների մակերեսների գումարը հավասար է երկու անգամ HB անկյունագծով ուղղանկյան մակերեսին ''(Պնդ․ 1.43)'', ապա KB անկյունագծով ուղղանկյան մակերեսը հավսար է LH և HB անկյունագծերով ուղղանկյունների մակերեսների գումարին։ Ինչպես ցույց էր տրված վերևում գնոմոն MNO-ն հավասար է СG անկյունագծով քառակուսու մակերեսին։ Հետևում է, որ HF անկյունագծով ուղղանկյան մակերեսը հավասար է BDGE ուղղանկյան մակերեսին։ Իսկ վերջինս հավասար է СD և BD կողմերով կառուցված ուղղանկյան մակերեսին, <math>CD = DG<\/math>, HF անկյունագծով ուղղանկյան մակերեսը հավասար է <math>CB^2<\math>։ Հետևաբար CD և BD կողմերով կառուցված ուղղանկյան մակերեսը հավասար է <math>CB^2<\/math> <math>(CB^2 = DC\cdot BD)<\/math>: Այսպիսով, ստանում ենք <math>\frac{DC}{CB} = \frac{CB}{BD}<\/math> ''(Պնդ․ 6․17)'': Եվ քանի որ DC ավելի մեծ է քան СB (տես Լեմմա, ներքևում), ապա СB-ն նույնպես ավելի մեծ է քան BD-ն։ Այսպիսով, եթե CD հատվածը բաժանված է արտաքին և միջին հարաբերությամբ, ապա СB-ն նրա մեծ հատվածն է։
Այսպիսով, եթե հատվածի քառակուսին հավասար է նրա հատվածներից մեկի քառակուսու հնգապատիկին, և երկու անգամ այդ փոքր հատվածը մասնատված է արտաքին և միջին հարաբերությամբ, ապա հարաբերության մեծ հատվածը սկզբնական հատվածի մյուս մնացորդ մասն է, ինչը և պահանջվում էր ապացուցել։