Changes
Այսպիսով, եթե եռանկյան կողմերից մեկին զուգահեռ ուղիղ գիծ գծենք, ապա այն համաչափ կբաժանի եռանկյան (մյուս) կողմերը։ Եվ եթե եռանկյան (երկու) կողմերը աժանվեն համաչափ, ապա այդ կետերը միացնող ուղիղ գիծը կլինի զուգահեռ եռանկյան մնացած կողմին։ (Այսինքն՝ այն, ինչ պետք էր ցույց տալ)։
== Պնդում 3==
Եթե եռանկյան անկյունը կիսվում է, և այդ անկյունը կիսող ուղիղ գիծը կտրում է նաև հիմքը, ապա հիմքի հատվածները կունենան նույն հարաբերությունը, ինչ եռանկյան մնացած կողմերը։ Եվ եթե հիմքի հատվածները ունեն նույն հարաբերությունը, ինչ եռանկյան մնացած կողմերը, ապա գագաթը կետին միացնող ուղիղ գիծը կիսում է եռանկյան անկյունը։
== Պնդում 4==
Նման (հավասարանկյուն) եռանկյուններում կողերն ունեն համեմատական հարաբերություն, և այն կողմերը, որոնք ունեն հավասար անկյուններ, համապատասխանում են միմյանց:
== Պնդում 5==
Եթե երկու եռանկյունները ունեն համաչափ կողմեր, ապա եռանկյունները կլինեն նման (հավասարանկյուն), և կունենան անկյուններ, որոնք համապատասխանում են համաչափ կողմերին։
== Պնդում 6==
Եթե երկու եռանկյուններն ունեն համապատասխան անկյունը հավասար է, և այդ հավասար անկյունների կողմերը համաչափ են, ապա եռանկյունները կլինեն հավասարանկյուն և կունենան անկյուններ, որոնք համապատասխանում են այդ կողմերին:
== Պնդում 7==
Եթե երկու եռանկյուններն ունեն մեկ անկյուն, որոնք հավասար են իրար ,և մյուս անկյունների կողմերն ունեն համապատասխանաբար նույն հարաբերությունը, իսկ մնացած անկյունները երկուսն էլ փոքր են կամ երկուսն էլ փոքր չեն ուղիղ անկյուններից, ապա եռանկյունները կլինեն նման (հավասարանկյուն), և կունենան հավասար անկյուններ, որոնց համապատասխան կողմերը կունենան նույն հարաբերությունը։
== Պնդում 8==
Եթե ուղղանկյուն եռանկյան ուղիղ անկյունից ուղիղ գիծ է գծվում ՝ ուղղահայաց հիմքի վրա, ապա ուղղահայաց գծի շուրջ գտնվող եռանկյունները նման են միմյանց և մեծ ուղանկյուն (եռանկյանը):
*Այլ կերպ ասած, ուղղահայացը հիմքի հատվածների երկրաչափական միջինն է։
== Պնդում 9==
Տրված ուղիղ գծից հարկավոր է կտրել սահմանված մասը:
== Պնդում 10==
Տրված չկտրվող ուղիղ գիծը կտրել այնպես, ինչպես տվյալ կտրված ուղիղ գիծը:
== Պնդում 11==
Հարկավոր է գտնել երրորդ ուղիղ գիծը, որը համաչափ է մյուս երկու ուղիղ գծերին:
== Պնդում 12==
Պահանջվում է գտնել չորրորդ ուղիղ գիծը , որը համաչափ կլինի տրված երեք ուղիղ գծերին:
== Պնդում 13==
Գտնել ուղիղ գիծը, որը հավասար է երկու ուղիղ գծերի միջին համամասնությանը:
== Պնդում 14==
Հավասար և հավասարանկյուն զուգահեռագծերում հավասար անկյուններին համապատասխան կողմերը փոխադարձաբար համեմատական են։ Այդ հավասարանկյուն զուգահեռագծերը իրար հավասար են, քանի որ հավասար անկյունների կողմերը փոխադարձաբար համեմատական են են:
== Պնդում 15==
Հավասար եռանկյուններում, որոնց համապատասխան մի անկյունը հավասար է, ապա այդ անկյունների կողմերը փոխադարձ համեմատական են։ Եվ այդ եռանկյունների հավասար անկյունների համապատասխան կողմերը փոխադարձ համեմատական են և հավասար:
== Պնդում 16==
Եթե չորս ուղիղ գծեր համաչափ են, ապա (երկու) արտաքին կողմերով կազմված ուղղանկյունը հավասար է (երկու) միջին կողմերով կազմված ուղղանկյանը։ Եվ եթե այդ ուղղանկյունները իրար հավասար են, ապա, չորս ուղիղ գծերը կլինեն համաչափ։
== Պնդում 17==
Եթե երեք ուղիղ գծեր համաչափ են միմյանց, ապա տրված (երկու) արտաքին հատվածներով կազմված ուղղանկյունը հավասար է միջին հատվածներով կազմված քառակուսուն։ Եվ եթե այդ ուղղանկյունը հավասար է քառակուսուն, ապա տվյալ երեք ուղիղ գծերը կլինեն համաչափ։
== Պնդում 18==
Նկարագրել ուղղագիծ պատկեր, որը նման է տրված ուղղագծային պատկերին:
== Պնդում 19==
Նման եռանկյունները մեկմեկու ունեն համապատասխան կողմերի քառակուսի հարաբերություն:
== Պնդում 20==
Նման բազմանկյունները կարող են բաժանվել նույն թվով նման եռանկյունների, որոնք համամասն են ամբողջական բազմանկյանը, և բազմանկյունը այլ բազմանկյան հետ քառակուսի հարաբերություն՝ համապատասխանաբար կողմով:
== Պնդում 21==
Ոււղղագիծ պատկերները, որոնք նման են միևնույն ուղղագծին, նույնպես միմյանց նման են:
Այսպիսով, A ուղղագիծ պատկերը նման է B պատկերին[Սահմ. 6.1]։ Ապացուցվեց, ինչը որ պահանջվում էր:
== Պնդում 22==
Եթե չորս ուղիղ գծերը համաչափ են, համանման և նույն կերպ նկարագրված գծված, ապա իրենցով կազմված ուղղագիծ պատկերները նույնպես համաչափ կլինեն: Եվ եթե նմանատիպ և նույն կերպ նկարագրված ուղղագիծ պատկերները (գծված) համաչափ են, ապա ուղիղ գծերն իրենք նույնպես համաչափ կլինեն: