Changes
== Պնդում 5 ==
Եթե ուղիղ գիծը կտրված է արտաքին և միջին հարաբերությամբ, և այդ մեծ կտորին հավասար ուղիղ գիծը ավելացվում է դրան, ապա ամբողջ ուղիղ գիծը կտրված է արտաքին և միջին հարաբերությամբ, և սկզբնական ուղիղ գիծը մեծ կտորն է։
Թող AB լինի ուղիղ գիծ, և թող այն կտրված լինի արտաքին և միջին հարաբերությամբ C կետում, և թող AC-ն լինի մեծ կտորը։ Եվ թող AD-ն [դառնա] հավասար AC-ին։ Ասում եմ, որ DB ուղիղ գիծը կտրված է արտաքին և միջին հարաբերությամբ A կետում, և որ սկզբնական AB ուղիղ գիծը մեծ կտորն է։
Թող AE քառակուսին նկարագրված լինի AB-ի վրա, և թող մնացած պատկերն ընդունի իր ձևը։ Քանի որ AB-ն կտրված է արտաքին և միջին հարաբերությամբ C կետում, ապա ABC-ում պարունակվող ուղղանկյունը հավասար է AC-ի վրա քառակուսուն [Սահմանում 6.3, Պնդում 6.17]։ Եվ CE-ն է ABC-ում պարունակվող ուղղանկյունը, և CH-ը՝ AC-ի վրա քառակուսին։ Բայց, HE-ն հավասար է CE-ին [Պնդում 1.43], և DH-ն հավասար է HC-ին։ Այսպիսով, DH-ն նաև հավասար է HE-ին։ [Թող HB-ն ավելացվի երկուսի վրա]։ Այսպիսով, ամբողջ DK-ն հավասար է ամբողջ AE-ին։ Եվ DK-ն է BD և DA-ում պարունակվող ուղղանկյունը։ Քանի որ AD-ն հավասար է DL-ին, և AE-ն է AB-ի վրա քառակուսին։ Այսպիսով, BD-ում պարունակվող ուղղանկյունը հավասար է AB-ի վրա քառակուսուն։ Այսպիսով, ինչպես DB-ն է BA-ի նկատմամբ, այնպես էլ BA-ն է AD-ի նկատմամբ [Պնդում 6.17]։ Եվ DB-ն ավելի մեծ է BA-ից։ Այսպիսով, BA-ն նույնպես ավելի մեծ է AD-ից [Պնդում 5.14]։
Այսպիսով, DB-ն կտրված է արտաքին և միջին հարաբերությամբ A կետում, և մեծ կտորը AB-ն է։ (Իսկ դա էր, ինչ պետք էր ցույց տալ)։
== Պնդում 6 ==
Եթե մի ռացիոնալ ուղիղ գիծը կտրված է արտաքին և միջին հարաբերությամբ, ապա յուրաքանչյուր կտորը կլինի այն անպարբեր (ուղիղ գիծ), որ կոչվում է «ապոտոմ»։
Թող AB լինի ռացիոնալ ուղիղ գիծ, որը կտրված է արտաքին և միջին հարաբերությամբ C կետում, և թող AC-ն լինի մեծ կտորը։ Ասում եմ, որ AC և CB-ը, յուրաքանչյուրը, կլինեն այն անպարբեր (ուղիղ գիծ), որ կոչվում է «ապոտոմ»։
Թող BA-ն ընդարձակվի, և թող AD-ն արվի (հավասար) BA-ի կեսին։ Այսպիսով, քանի որ AB ուղիղ գիծը կտրված է արտաքին և միջին հարաբերությամբ C կետում, և AD-ն, որը BA-ի կեսն է, ավելացվել է մեծ կտոր AC-ին, ապա CD-ի վրա քառակուսին կլինի հինգ անգամ DA-ի վրա քառակուսիին [Պնդում 13.1]։ Այսպիսով, CD-ի վրա քառակուսին և DA-ի վրա քառակուսին կունենան հարաբերություն, որը նման է մի թվի հարաբերությանը մյուս թվին։ CD-ի վրա քառակուսին, հետևաբար, համահունչ կլինի DA-ի վրա քառակուսուն [Պնդում 10.6]։ Իսկ DA-ի վրա քառակուսին կլինի ռացիոնալ, քանի որ DA-ն ռացիոնալ է, երբ որ AB-ն ռացիոնալ է։ Այսպիսով, CD-ի վրա քառակուսին նույնպես կլինի ռացիոնալ [Սահմանում 10.4]։ Այսպիսով, CD-ն նույնպես ռացիոնալ է։ Եվ քանի որ CD-ի վրա քառակուսին չի ունենում հարաբերություն DA-ի վրա քառակուսիին, որը նման է քառակուսի թվերի հարաբերությանը, ապա CD-ն չհամապատասխանում է DA-ի երկարության հետ [Պնդում 10.9]։ Այսպիսով, CD և DA-ը այն ռացիոնալ ուղիղ գծերն են, որոնք համահունչ են միայն քառակուսու տեսքով։ Այսպիսով, AC-ն կլինի ապոտոմ [Պնդում 10.73]։
Կրկին, քանի որ AB-ն կտրված է արտաքին և միջին հարաբերությամբ, և AC-ն մեծ կտորն է, ապա AB և BC-ի պարունակած ուղղանկյունը կլինի հավասար AC-ի վրա քառակուսուն [Սահմանում 6.3, Պնդում 6.17]։ Այսպիսով, AC-ի վրա ապոտոմի քառակուսին, կիրառված ռացիոնալ ուղիղ գծի AB-ի վրա, կկազմի BC՝ որպես լայնություն։ Եվ ապոտոմի վրա քառակուսին, կիրառված ռացիոնալ ուղիղ գծի վրա, կկազմի առաջին ապոտոմը՝ որպես լայնություն [Պնդում 10.97]։ Այսպիսով, CB-ն կլինի առաջին ապոտոմ։ Եվ CA-ն նույնպես ցույց տրված է որպես ապոտոմ։
Այսպիսով, եթե մի ռացիոնալ ուղիղ գիծը կտրված է արտաքին և միջին հարաբերությամբ, ապա յուրաքանչյուր կտորը կլինի այն անպարբեր (ուղիղ գիծ), որ կոչվում է «ապոտոմ»։
== Պնդում 7 ==
**If three angles, either consecutive or not consecutive, of an equilateral pentagon are equal then the pentagon will be equiangular.**
Թող երեք անկյունները, որոնք լինելու են կամ հաջորդական, կամ ոչ հաջորդական, հավասար կլինեն հավասարանկյուն պենտագոնում, ապա պենտագոնը կլինի հավասարանկյուն։
Դա ցույց տալու համար, թող պենտագոնի ABCDE երեք անկյունները՝ առաջին հերթին A, B և C կետերում, հավասար լինեն իրար։ Ես ասում եմ, որ պենտագոնը ABCDE հավասարանկյուն է։
Թող AC, BE և FD լինեն միացված։ Եվ քանի որ երկու (ուղղաձիգ գծերը) CB և BA հավասար են երկու (ուղղաձիգ գծերին) BA և AE համապատասխանաբար, և CBA անկյունը հավասար է BAE անկյունին, ապա AC հիմքը հավասար կլինի BE հիմքին, և ABC եռանկյունը հավասար կլինի ABE եռանկյունին, և մնացած անկյունները հավասար կլինեն մնացած անկյուններին, որոնք հավասար կողմերի տրված անկյուններին ենթադրում են [Պրոֆ. 1.4]։ Իսկ դա նշանակում է, որ BCA (հավասար է) BEA-ին, իսկ ABE-ը (հավասար է) CAB-ին։
Այսպիսով, AF կողմը նույնպես հավասար է BF կողմին [Պրոֆ. 1.6]։ Եվ ամբողջ AC-ն նույնպես ցույց է տրվել, որ հավասար է BE-ին։ Այսպիսով, մնացորդը FC նույնպես հավասար կլինի FE-ին։ Եվ CD-ն նույնպես հավասար է DE-ին։
Այսպիսով, երկու (ուղղաձիգ գծերը) FC և CD հավասար են երկու FE և ED համապատասխանաբար։ Իսկ FD-ը նրանց ընդհանուր հիմքն է։ Այսպիսով, FCD անկյունը հավասար է FED անկյունին [Պրոֆ. 1.8]։
Եվ BCA-ն նույնպես ցույց է տրվել, որ հավասար է AEB-ին։ Այսպիսով, ամբողջ BCD-ն հավասար է AED-ին։ Բայց, BCD անկյունը ենթադրվել էր, որ հավասար է A և B անկյուններին։ Այսպիսով, AED անկյունը նույնպես հավասար կլինի A և B անկյուններին։
Այսպիսով, նույն կերպ կարող ենք ցույց տալ, որ CDE անկյունը նույնպես հավասար է A, B, C անկյուններին։ Այսպիսով, պենտագոնը ABCDE հավասարանկյուն է։