Changes

Տարերք/Գիրք 10

Ավելացվել է 4593 բայտ, 11 Դեկտեմբեր
Սա այն էր, ինչ անհրաժեշտ էր ապացուցել։
 
 
==Պնդում 103==
Ուղիղ գիծը, որը երկարությամբ համաչափ է ապոտոմեի հետ, ինքն էլ ապոտոմե է և նույն կարգի է։
[[Պատկեր:103.png|center|350px]]
Թող AB-ն լինի ապոտոմե, և թող CD-ն լինի երկարությամբ համաչափ AB-ի հետ։ Ասում եմ, որ CD-ն նույնպես ապոտոմե է և նույն կարգի է, ինչ AB-ն։
 
Քանի որ AB-ն ապոտոմե է, թող BE-ն լինի կցորդ դրան։ Այսպիսով, AE-ն և EB-ն ռացիոնալ (ուղիղ գծեր են, որոնք) համաչափ են միայն քառակուսիներով [Տե՛ս "Տարրեր" 10.73]։ Եվ թող այնպես լինի, որ BE-ի և DF-ի հարաբերությունը նույնն է, ինչ AB-ի և CD-ի հարաբերությունը [Տե՛ս "Տարրեր" 6.12]։ Այսպիսով, ինչպես մեկ է մեկի նկատմամբ, այնպես էլ ամեն ինչ՝ ամեն ինչի [Տե՛ս "Տարրեր" 5.12]։ Եվ ինչպես ամբողջ AE-ն է ամբողջ CF-ի նկատմամբ, այնպես էլ AB-ն է CD-ի նկատմամբ։ Եվ AB-ն համաչափ է երկարությամբ CD-ի հետ։ AE-ն, հետևաբար, նույնպես համաչափ է CF-ի հետ, և BE-ն՝ DF-ի հետ [Տե՛ս "Տարրեր" 10.11]։
 
Եվ AE-ն և BE-ն ռացիոնալ (ուղիղ գծեր են, որոնք) համաչափ են միայն քառակուսիներով։ Այսպիսով, CF-ն և FD-ն նույնպես ռացիոնալ (ուղիղ գծեր են, որոնք) համաչափ են միայն քառակուսիներով [Տե՛ս "Տարրեր" 10.13]։ Ուստի, CD-ն ապոտոմե է։ Ասում եմ, որ այն նույնպես նույն կարգի է, ինչ AB-ն։
 
Ուստի, քանի որ ինչպես AE-ն է CF-ի նկատմամբ, այնպես էլ BE-ն է DF-ի նկատմամբ, ապա, այլընտրանքով, ինչպես AE-ն է EB-ի նկատմամբ, այնպես էլ CF-ն է FD-ի նկատմամբ [Տե՛ս "Տարրեր" 5.16]։ Այսպիսով, AE-ի վրա կառուցված քառակուսին մեծ է EB-ի վրա կառուցված քառակուսուց կամ որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը համաչափ է կամ անհամաչափ AE-ի հետ։
 
Ուստի, եթե AE-ի վրա կառուցված քառակուսին մեծ է EB-ի վրա կառուցված քառակուսուց որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը համաչափ է AE-ի հետ, ապա CF-ի վրա կառուցված քառակուսին նույնպես մեծ կլինի FD-ի վրա կառուցված քառակուսուց որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը համաչափ է CF-ի հետ [Տե՛ս "Տարրեր" 10.14]։ Եվ եթե AE-ն երկարությամբ համաչափ է նախապես տրված ռացիոնալ ուղիղ գծի հետ, ապա նույնը նաև CF-ն է [Տե՛ս "Տարրեր" 10.12]։ Եվ եթե BE-ն համաչափ է, ապա նաև DF-ը։ Եվ եթե ոչ AE-ն և ոչ էլ EB-ն համաչափ չեն, ապա նույնը նաև CF-ն և FD-ն [Տե՛ս "Տարրեր" 10.13]։
 
Եվ եթե AE-ի վրա կառուցված քառակուսին մեծ է EB-ի վրա կառուցված քառակուսուց որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը անհամաչափ է AE-ի հետ, ապա CF-ի վրա կառուցված քառակուսին նույնպես մեծ կլինի FD-ի վրա կառուցված քառակուսուց որոշակի ուղիղ գծի վրա կառուցված քառակուսու չափով, որը անհամաչափ է CF-ի հետ [Տե՛ս "Տարրեր" 10.14]։ Եվ եթե AE-ն երկարությամբ համաչափ է նախապես տրված ռացիոնալ ուղիղ գծի հետ, ապա նույնը նաև CF-ն է [Տե՛ս "Տարրեր" 10.12]։ Եվ եթե BE-ն համաչափ է, ապա նաև DF-ը։ Եվ եթե ոչ AE-ն և ոչ էլ EB-ն համաչափ չեն, ապա նույնը նաև CF-ն և FD-ն [Տե՛ս "Տարրեր" 10.13]։
 
Ուստի, CD-ն ապոտոմե է և նույն կարգի է, ինչ AB-ն [Տե՛ս "Տարրեր" 10.11-10.16]։ Սա այն էր, ինչ անհրաժեշտ էր ապացուցել։