Changes

Տարերք/Գիրք 10

Ավելացվել է 5185 բայտ, 12 Դեկտեմբեր
/* Պնդում 100 */
Ուստի, FO-ն և NL-ն յուրաքանչյուրը հավասար են AG և GB-ի պարփակված մակերեսին: Եվ քանի որ AG-ի և GB-ի պարփակված մակերեսի կրկնապատիկը միջանկյալ է, և հավասար է FL-ին, FL-ն էլ միջանկյալ է: Եվ այն կիրառվում է ռացիոնալ (ուղիղ-գիծ) FE-ին, ձևավորելով F'M՝ որպես լայնություն: Ուստի, FM-ն ռացիոնալ է, և երկարությամբ համաչափ չէ CD-ի հետ [Տե՛ս «Տարրեր», 10.22]: Եվ քանի որ AG-ի և GB-ի քառակուսիների գումարը ռացիոնալ է, և երկու անգամ AG-ի և GB-ի պարփակված մակերեսը միջանկյալ է, AG-ի և GB-ի քառակուսիների գումարը համաչափ չէ երկու անգամ AG-ի և GB-ի պարփակված մակերեսի հետ: Եվ CL-ը հավասար է AG-ի և GB-ի քառակուսիների գումարին, իսկ FL-ը հավասար է երկու անգամ AG-ի և GB-ի պարփակված մակերեսին: CL-ը, այսպեսով, համաչափ չէ FL-ի հետ: Եվ քանի որ CL-ը FL-ին է, այնպես էլ CM-ն MF-ին է [Տե՛ս «Տարրեր», 6.1]: CM-ն էլ երկարությամբ համաչափ չէ MF-ի հետ [Տե՛ս «Տարրեր», 10.11]: Եվ երկուսն էլ ռացիոնալ (ուղիղ-գծեր) են: Ուստի, CM և MF-ն ռացիոնալ (ուղիղ-գծեր են), որոնք միայն քառակուսիով են համաչափ: CF-ը, այսպեսով ապոտոմ է [Տե՛ս «Տարրեր», 10.73]. Ուստի, ես ասում եմ, որ դա նաև չորրորդ ապոտոմ է:
Քանի որ AG-ն և GB-ն համաչափ չեն քառակուսիով, AG-ի քառակուսին այսպես էլ համաչափ չէ GB-ի քառակուսու հետ: Եվ CH-ը հավասար է AG-ի քառակուսուն, իսկ KL-ը՝ GB-ի քառակուսուն: Ուստի, CH-ը համաչափ չէ KL-ի հետ: Եվ քանի որ CH-ը KL-ին է, այնպես էլ CK-ն KM-ին է [Տե՛ս «Տարրեր», 6.1]: CK-ն էլ երկարությամբ համաչափ չէ KM-ի հետ [Տե՛ս «Տարրեր», 10.11]: Եվ քանի որ AG-ի և GB-ի պարփակված մակերեսը միջին համեմատական է AG-ի և GB-ի քառակուսիների հետ [Տե՛ս «Տարրեր», 10.21], իսկ AG-ի քառակուսին հավասար է CH-ին, GB-ի քառակուսին՝ KL-ին, իսկ AG-ի և GB-ի պարփակված մակերեսը՝ NL-ին, NL-ը միջին համադրող է CH-ի և KL-ի հետ: Ուստի, ինչպես CH-ը NL-ին է հարաբերում, այնպես էլ NL-ը՝ KL-ին: Բայց քանի որ CH-ը NL-ին է, այնպես էլ CK-ը NM-ին է, ու NL-ը հարաբերում է KL-ին, այնպես էլ NM-ը KM-ին է [Տե՛ս «Տարրեր», 6.1]: Ուստի, քանի որ CK-ը MN-ին է հարաբերում, այնպես էլ MN-ը KM-ին է [Տե՛ս «Տարրեր», 5.111]. CK և KM-ի պարփակված մակերեսը հավասար է MN-ի քառակուսուն՝ այսինքն, FM-ի քառակուսու չորրորդ մասին [Տե՛ս «Տարրեր», 6.17]. Ուստի, քանի որ CM և MF երկու տարբեր (ուղիղ-գծեր) են, և CK-ի և KM-ի պարփակված մակերեսը, որը հավասար է ME-ի քառակուսու)ժ չորրորդ մասին, կիրառվել է CM-ի վրա, որն ի վերջո չի հասնում քառակուսի եզրին և բաժանում է այն համաչափ չհամակարգվող մասերի, CM-ի քառակուսին այդպես ավելի մեծ է MF-ի քառակուսին քան այն քառակուսին, որը ուղիղ-գիծ է, երկարությամբ համաչափ չէ CM-ի հետ [Տե՛ս «Տարրեր», 10.18]. Եվ CM-ի ամբողջականությունը երկարությամբ համաչափ է նախորդում ռացիոնալ ուղիղ-գիծ CD-ի հետ: Ուստի, CF-ը չորրորդ ապոտոմ է [Տե՛ս «Տարրեր», 10.14].
 
 
==Պնդում 101==
Այն քառակուսին որը չորրորդ ապոտոմի միջին ուղիղ գծի վրա է, և կիրառված է ռացիոնալ ուղիղ-գծին, առաջացնում է հինգերորդ ապոտոմ որպես լայնություն։
 
Թող AB-ն լինի այն ուղիղ-գիծը, որը ռացիոնալ մակերեսի հետ կազմում է միջին ամբողջություն, և CD-ն՝ ռացիոնալ ուղիղ-գիծ: Եվ թող CB-ն, որը հավասար է AB-ի քառակուսուն, կիրառվի CD-ին, ձևավորելով CF՝ որպես լայնություն: Ես ասում եմ, որ CF-ն է հինգերորդ ապոտոմը:
 
Թող BG-ն լինի AB-ին կցորդ: Ուստի, AG-ն և GB-ն համաչափ չեն քառակուսիով, ինչը նշանակում է, որ նրանց վրա գտնվող քառակուսիների գումարը միջին է, և երկու անգամ նրանց պարփակված մակերեսը ռացիոնալ է [Տե՛ս «Տարրեր», 10.77]: Եվ թող CH-ն, որը հավասար է AG-ի քառակուսուն, կիրառվի CD-ին, իսկ KL-ն՝ հավասար է GB-ի քառակուսուն: CL-ի ամբողջականությունն այսպիսով հավասար է AG-ի և GB-ի քառակուսիների գումարին: Եվ AG-ի և GB-ի քառակուսիների գումարը միջին է: Այսպիսով, CL-ն միջին է: Եվ այն կիրառվում է ռացիոնալ (ուղիղ-գիծ) CD-ին, ձևավորելով CM՝ որպես լայնություն: CM-ն այսպիսով ռացիոնալ է և երկարությամբ համաչափ չէ CD-ի հետ [Տե՛ս «Տարրեր», 10.22]:
 
Եվ քանի որ CL-ի ամբողջությունը հավասար է AG-ի և GB-ի քառակուսիների գումարին, որոնցից CE-ն հավասար է AB-ի քառակուսուն, մնացորդ FL-ն հավասար է երկու անգամ AG-ի և GB-ի պարփակված մակերեսին [Տե՛ս «Տարրեր», 2.71]: Ուստի, թող FM-ն կիսվի N կետում: Եվ թող NO-ն գծվի N-ից՝ զուգահեռ CD-ին կամ ML-ին: Այսպիսով, FO-ն և NL-ն հավասար են AG-ի և GB-ի պարփակված մակերեսին: Եվ քանի որ երկու անգամ AG-ի և GB-ի պարփակված մակերեսը ռացիոնալ է, և հավասար է FL-ին, ապա FL-ն նույնպես ռացիոնալ է: Եվ այն կիրառվում է ռացիոնալ (ուղիղ-գիծ) EF-ին, ձևավորելով FM՝ որպես լայնություն: Այսպիսով, FM-ն ռացիոնալ է, և երկարությամբ համաչափ է CD-ի հետ [Տե՛ս «Տարրեր», 10.20]: Եվ քանի որ CL-ը մեդիալ է, իսկ FL-ը ռացիոնալ, CL-ը այսպիսով համաչափ չէ FL-ի հետ: Եվ քանի որ CL-ը հավասար է FL-ին, ինչպես CL-ն է համեմատվում FL-ի հետ, այնպես էլ CM-ն ME-ի հետ [Տե՛ս «Տարրեր», 6.11]: CM-ն այսպիսով համաչափ չէ MF-ի հետ [Տե՛ս «Տարրեր», 10.11]: Եվ երկուսն էլ ռացիոնալ են: Այսպիսով, CM-ը և MF-ը ռացիոնալ (ուղիղ-գծեր են), որոնք համաչափելի են միայն քառակուսիներով: CF-ը այսպիսով ապոտոմ է [Տե՛ս «Տարրեր», 10.73]. Ուստի ես ասում եմ, որ այն նաև հինգերորդ ապոտոմ է:
 
Քանի որ, ինչպես նախորդ պնդումներում, մենք կարող ենք ցույց տալ, որ CKM-ի պարփակված մակերեսը հավասար է NM-ի քառակուսուն՝ այսինքն՝ FM-ի քառակուսու չորրորդ մասին: Եվ քանի որ AG-ի քառակուսին համաչափ չէ GB-ի քառակուսուն, իսկ AG-ի քառակուսին հավասար է CH-ին, և GB-ի քառակուսին հավասար է KL-ին, CH-ն այսպիսով համաչափ չէ KL-ի հետ: Եվ քանի որ CH-ն համեմատվում է KL-ին, այնպես էլ CK-ն համեմատվում է KM-ի հետ [Տե՛ս «Տարրեր», 6.11]. Այսպիսով, CK-ն համաչափ չէ KM-ի հետ [Տե՛ս «Տարրեր», 10.11]: Ուստի, քանի որ CM-ը և MF-ը երկու անհամաչափելի ուղիղ գծեր են, և մակերեսը, որը հավասար է FM-ի քառակուսու չորրորդ մասին, կիրառվել է CM-ի վրա և բաժանում է այն անհամաչափ մասերի, CM-ի քառակուսին այսպիսով մեծ է MF-ի քառակուսուց, որը անհամաչափ է CM-ի հետ [Տե՛ս «Տարրեր», 10.18]. Եվ կցորդ FM-ն համաչափ է նախկինում սահմանված ռացիոնալ ուղիղ-գծի՝ CD-ի հետ: Այսպիսով, CF-ը հինգերորդ ապոտոմ է [Տե՛ս «Տարրեր», 10.15]. Ինչը հենց այն է, ինչ պահանջվում էր ապացուցել:
== Էջ 406 - 422 ==