Changes

Տարերք/Գիրք 1

Ավելացվել է 3750 բայտ, Friday at 07:38
/* Պնդում 5 */
== Պնդում 5 ==
Հավասարակողմ եռանկյունների համար հիմքի անկյունները հավասար են միմյանց, և եթե հավասար կողմերը երկարացվեն, ապա հիմքի տակ գտնվող անկյունները նույնպես կլինեն հավասար միմյանց:
 
[[Պատկեր:Euclids Elements book1 proposition5.jpg|center|200px]]
 
Թող ABC լինի հավասարակողմ եռանկյուն, որի կողմը AB-ն հավասար է կողմ AC-ին, և թող ուղիղ գծերը BD և CE երկարացված լինեն AB-ի և AC-ի ուղղությամբ համապատասխանաբար [աքսիոմա 2]: Ես ասում եմ, որ անկյուն
ABC-ն հավասար է անկյուն ACB-ին, և CBD-ն հավասար է BCE-ին:
 
Քանի որ, F կետը վերցված է պատահականորեն BD-ի վրա, և AG-ն կտրված է մեծ AE-ից, հավասար AF-ին [պնդում 1.3]: Բացի այդ, թող FC և GB ուղիղ գծերը միացված լինեն [աքսիոմա 1]:
 
Փաստորեն, քանի որ AF հավասար է AG-ին, և AB հավասար է AC-ին, ուղիղ գծերը FA, AC հավասար են GA, AB ուղիղ գծերին համապատասխանաբար։ Դրանք ներառում են նաև ընդհանուր անկյուն FAG: Հետևաբար, հիմքը FC-ն հավասար է հիմք GB-ին GB, և եռանկյուն AFC-ն հավասար կլինի եռանկյուն
AGB-ին, իսկ հավասար կողմերով ստեղծված մնացած անկյունները կլինեն հավասար համապատասխան մնացած անկյուններին [պնդում 1.4]: (Այսինքն՝
ACF=ABG-ի և AFC=AGB):
 
Քանի որ AF-ն ամբողջությամբ հավասար է AG-ին, որի մեջ AB-ն հավասար է
AC-ին, մնացորդը BF-ն հավասար կլինի մնացորդ CG-ին [ընդհանուր հասկացություն 3]: Սակայն FC-ն նույնպես ցույց տրվեց, որ հավասար է
GB-ին: Հետևաբար, ուղիղ գծերը BF-ն ու FC-ն հավասար են CG ու GB ուղիղ գծերին համապատասխանաբար, և անկյուն BFC-ն հավասար է անկյուն
CGB-ին, և հիմքը BC-ն ընդհանուր է դրանց համար։ Այսպիսով, եռանկյուն
BFC-ն հավասար կլինի եռանկյուն CGB-ին, իսկ հավասար կողմերով ստեղծված մնացած անկյունները կլինեն հավասար համապատասխան մնացած անկյուններին [պնդում 1.4]:
 
Հետևաբար, FBC-ն հավասար է GCB-ին, և BCF-ն հավասար է CBG-ին։ Հետևաբար, քանի որ ամբողջ անկյուն ABG-ն ցույց տրվեց, որ հավասար է ամբողջ անկյան ACF-ին, որի մեջ CBG-ն հավասար է BCF-ին, մնացորդը
ABC-ն նույնպես հավասար է մնացորդին ACB [ընդհանուր հասկացություն 3]: Եվ դրանք գտնվում են եռանկյուն ABC-ի հիմքում։ FBC-ն նույնպես ցույց տրվեց, որ հավասար է GCB-ին։ Եվ դրանք գտնվում են հիմքի տակ։
 
Այսպիսով, հավասարակողմ եռանկյունների համար հիմքի անկյունները հավասար են միմյանց, և եթե հավասար կողմերը երկարացվեն, ապա հիմքի տակ գտնվող անկյունները նույնպես կլինեն հավասար միմյանց։ Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ։
== Պնդում 6 ==
57
edits