Changes
/* Պնդում 6 */
== Պնդում 6 ==
Եթե եռանկյունն ունի երկու անկյուն, որոնք հավասար են միմյանց, ապա հավասար անկյուններին դիմաց գտնվող կողմերը նույնպես կլինեն հավասար միմյանց:
[[Պատկեր:Euclids Elements book1 proposition6.jpg|center|200px]]
Թող ABC լինի եռանկյուն, որի ABC անկյունը հավասար է ACB անկյանը: Ես ասում եմ, որ կողմ AB-ն նույնպես հավասար է կողմ AC-ին:
Եթե AB-ն հավասար չէ AC-ին, ապա դրանցից մեկը մեծ է: Թող AB-ն լինի մեծը: Եվ թող DB-ն, որը հավասար է փոքր AC-ին, կտրված լինի մեծ AB-ից [պնդում 1.3]: Եվ թող DC-ն միացված լինի [աքսիոմա 1]:
Հետևաբար, քանի որ DB-ն հավասար է AC-ին, և BC-ն ընդհանուր է, երկու կողմերը DB, BC հավասար են երկու կողմերին AC, CB համապատասխանաբար, իսկ անկյուն DBC-ն հավասար է անկյուն ACB-ին: Այսպիսով, հիմքը DC-ն հավասար է հիմքին AB, իսկ եռանկյուն DBC-ն հավասար կլինի եռանկյուն
ACB-ին [պնդում 1.4], փոքրից մեծին: Ինքը գաղափարը (հակասում է) աբսուրդ է [ընդհանուր հասկացություն 5]: Այսպիսով, AB-ն հավասար չէ
AC-ին: Հետևաբար, AB-ն հավասար է AC-ին:
Այսպիսով, եթե եռանկյունն ունի երկու անկյուն, որոնք հավասար են միմյանց, ապա հավասար անկյունների դիմաց գտնվող կողմերը նույնպես կլինեն հավասար միմյանց: Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ:
== Պնդում 7 ==