Changes

Տարերք/Գիրք 1

Ավելացվել է 2902 բայտ, Friday at 09:12
/* Պնդում 13 */
== Պնդում 13 ==
Եթե ուղիղ գիծը ընկած է (մեկ այլ) ուղիղ գծի վրա և ստեղծում է անկյուններ, ապա այն անպայման կամ կստեղծի երկու ուղղանկյուն, կամ (անկյուններ, որոնց գումարը) հավասար կլինի երկու ուղղանկյան։
[[Պատկեր:Euclids Elements book1 proposition1փ.jpg|center|200px]]
 
Թող AB ուղիղ գիծը ընկած լինի CD ուղիղ գծի վրա և կազմի CBA և
ABD անկյունները։ Ես ասում եմ, որ անկյունները CBA և ABD հաստատ կամ երկու ուղղանկյուն են, կամ գումարը հավասար է երկու ուղղանկյան։
 
Փաստորեն, եթե CBA-ն հավասար է ABD-ին, ապա դրանք երկու ուղղանկյուն են [Սահմանում 1.10]։ Բայց, եթե ոչ, թող BE-ն գծվի B կետից՝ CD ուղիղ գծին ուղղանկյուն [Պնդում 1.11]։ Այսպիսով, CBE և EBD անկյունները երկու ուղղանկյուն են։ Քանի որ CBE-ն հավասար է երկու անկյունների՝
CBA և ABE-ի, թող EBD-ն ավելացվի երկուսին։ Այսպիսով, անկյունների
CBE և EBD գումարը հավասար է CBA, ABE և EBD երեք անկյունների գումարին [Ընդհանուր հասկացություն 2]։
 
Նույն կերպ, քանի որ DBA-ն հավասար է երկու անկյունների՝ DBE և
EBA-ի, թող ABC-ն ավելացվի երկուսին։ Այսպիսով, անկյունների
DBA-ի և ABC-ի գումարը հավասար է DBE-ի, EBA-ի, և ABC-ի գումարին [Ընդհանուր հասկացություն 2]։ Բայց անկյունների CBE և EBD գումարը նույնպես ցույց տրվեց, որ հավասար է նույն երեք անկյունների գումարին։ Իսկ բաները, որոնք հավասար են նույնին, նույնպես հավասար են միմյանց [Ընդհանուր հասկացություն 1]։
 
Հետևաբար, անկյունների CBE և EBD գումարը հավասար է անկյունների DBA և ABC գումարին։ Բայց CBE և EBD-ի գումարը երկու ուղղանկյուն է։ Այսպիսով, ABD և ABC-ի գումարը նույնպես հավասար է երկու ուղղանկյան։
 
Այսպիսով, եթե ուղիղ գիծը ընկած է (մեկ այլ) ուղիղ գծի վրա և ստեղծում է անկյուններ, ապա այն հաստատ կամ կստեղծի երկու ուղղանկյուն, կամ (անկյուններ, որոնց գումարը) հավասար կլինի երկու ուղղանկյան։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ):
== Պնդում 14 ==
57
edits