Changes
Եթե երկու թվեր փոխադարձաբար պարզ են, ապա դրանցից մեկի քառակուսիով ստեղծված թիվը փոխադարձաբար պարզ կլինի մյուսի հետ։
Դիցուք A և B երկու պարզ թվեր են, որոնք փոխադարձաբար պարզ են։ Թող A-ն ինքն իրեն բազմապատկելով ստեղծի C-ն։ Կարելի է պնդել , որ B-ն և C-ն փոխադարձաբար պարզ են։
Դիցուք D լինի հավասար A-ին։ Քանի որ A և B փոխադարձաբար պարզ են, իսկ A հավասար է D-ին, ապա D-ն և B-ն նույնպես փոխադարձաբար պարզ են։ Այսպիսով, D-ն և A-ն երկուսն էլ փոխադարձաբար պարզ են B-ի հետ։
Այլ կերպ ասած, D-ից և A-ից ստացված թիվը նույնպես փոխադարձաբար պարզ կլինի B-ի հետ։ Եվ C-ն է այն թիվը, որը ստացվում է D-ի և A-ի բազմապատկումով։ Այսպիսով, C-ն և B-ն նույնպես փոխադարձաբար պարզ են։ Սա է այն, ինչ պետք էր ցույց տալ։
== Պնդում 26 ==
Եթե երկու թվերն էլ փոխադարձաբար պարզ են երկու թվերի հետ, ապա դրանցից բազմապատկված, ստացված թվերը նույնպես փոխադարձաբար պարզ կլինեն իրար հետ։
Դիցուք A և B երկու թվեր լինեն, որոնք երկուսն էլ փոխադարձաբար պարզ են երկու այլ թվերի՝ C-ի և D-ի հետ։ Դիցուք, A-ն B-ի հետ բազմապատկելով ստանանք E-ն, և թող C-ն D-ի հետ բազմապատկելով ստանանք F-ն։ Ասում եմ, որ E և F փոխադարձաբար պարզ են։
Քանի որ A-ն և B-ն երկուսն էլ փոխադարձաբար պարզ են C-ի հետ, ապա A-ի և B-ի բազմապատկմամբ ստացված թիվը նույնպես փոխադարձաբար պարզ կլինի C-ի հետ։ Այսպիսով, E-ն և C-ն փոխադարձաբար պարզ են։