Changes

Տարերք/Գիրք 7

2 bytes removed, Friday at 21:27
ՈՒնեքն այն փաստը, որ E-ն հավասար է F-ին: Կարելի է պնդել, որ ինչպես A-ն է B-ի հանդեպ, այնպես էլ C-ն է D-ի հանդեպ:
Քանի որ նույն կառուցվածքով E-ն հավասար է F-ին, ուրեմն ինչպես G-ն է E-ի հետ համեմատում, այնպես էլ G-ն է F-ի հետ համեմատում: Ինչպես G-ն է հարաբերում E-ին, այնպես էլ C-ն է հարաբերում D-ին: Եվ ինչպես G-ն է F-ի հանդեպ, այնպես էլ A-ն է B-ի հանդեպ: Այսպիսով, ինչպես A-ն է B-ի հանդեպ, այնպես էլ C-ն է D-ի հանդեպ:
 
== Պնդում 19 ==
Այժմ, թող E-ն հավասար լինի F-ին։ Ես ասում եմ, որ ինչպես A-ն կապված է B-ի հետ, այնպես էլ C-ն կապված է D-ի հետ։ Վերջապես, նույն կառուցվածքով, քանի որ E-ն հավասար է F-ին, ինչպես G-ն կապված է E-ի հետ, այնպես էլ G-ն կապված է F-ի հետ։ Բայց ինչպես G-ն կապված է F-ի հետ, այնպես էլ ինչպես A-ն կապված է B-ի հետ։ Եվ այսպես, ինչպես A-ն է կապված B-ի հետ, այնպես էլ C-ն է կապված D-ի հետ:
Թեորեմն ապացուցված է:
 
== Պնդում 20 ==
Թող լինեն ամենափոքր թվերը, որոնք ունեն նույն հարաբերությունը՝ ինչպես A-ն և B-ն: Ասում եմ, որ CD-ն չափում է A-ն այնքան անգամ, որքան և EF-ն չափում է B-ն՝ մեծը՝ մեծին, և փոքրն՝ փոքրին: Այնպես որ, թող CD և EF լինեն ամենափոքր թվերը, որոնք ունեն նույն հարաբերությունը՝ A-ի և B-ի հետ համապատասխանաբար: Ես ասում եմ, որ CD-ն չափում է A-ն նույն քանակությամբ անգամ, որքան EF-ն չափում է B-ն։