Changes
/* Պնդում 19 */
Թող A, B, C, D լինեն չորս համեմատական թվեր։ Այնպես, ինչպես A-ն կապված է B-ի հետ, այնպես էլ C-ն կապված է D-ի հետ։A բազմապատկելով D-ով, կստացվի ստանա E, իսկ B բազմապատկելով C-ով, կստանանք F։ Եվ ես ասում եմ, որ E-ն հավասար է F-ի:
Այսպիսով, ինչպես C-ն կապված է D-ի հետ, այնպես էլ A-ն կապված է B-ի հետ։ Եվ այսպես, ինչպես A-ն կապված է B-ի հետ, այնպես էլ G-ն կապված է E-ի հետ։Քանի որ A-ն ստեղծեց G՝ բազմապատկելով C-ով, իսկ B-ն նույնպես ստեղծեց F՝ բազմապատկելով C-ով, ապա A-ն և B-ն ստեղծեցին համապատասխանաբար G և F՝ բազմապատկելով C։ Հետևաբար, ինչպես A-ն կապված է B-ի հետ, այնպես էլ G-ն կապված է F-ի հետ։
Այժմ, թող E-ն հավասար լինի F-ին։ Ես ասում եմ, որ ինչպես A-ն կապված է B-ի հետ, այնպես էլ C-ն կապված է D-ի հետ։ Վերջապես, նույն կառուցվածքով, քանի որ E-ն հավասար է F-ին, ինչպես G-ն կապված է E-ի հետ, այնպես էլ G-ն կապված է F-ի հետ։ Բայց ինչպես G-ն կապված է F-ի հետ, այնպես էլ ինչպես A-ն կապված է B-ի հետ։ Եվ այսպես, ինչպես A-ն է կապված B-ի հետ, այնպես էլ C-ն է կապված D-ի հետ:
Թեորեմն ապացուցված է:
== Պնդում 20 ==
Թող լինեն ամենափոքր թվերը, որոնք ունեն նույն հարաբերությունը՝ ինչպես A-ն և B-ն: Ասում եմ, որ CD-ն չափում է A-ն այնքան անգամ, որքան և EF-ն չափում է B-ն՝ մեծը՝ մեծին, և փոքրն՝ փոքրին: Այնպես որ, թող CD և EF լինեն ամենափոքր թվերը, որոնք ունեն նույն հարաբերությունը՝ A-ի և B-ի հետ համապատասխանաբար: Ես ասում եմ, որ CD-ն չափում է A-ն նույն քանակությամբ անգամ, որքան EF-ն չափում է B-ն։