Changes
+թարգմանիչներ
|վերնագիր = [[Տարերք]], Գիրք 1
|հեղինակ = [[էվկլիդես]]
|թարգմանիչ = [[Մասնակից:Hovhannes003|Hovhannes003]], [[Մասնակից:Արարատ Ղազարյան|Արարատ Ղազարյան]]
|աղբյուր = [https://farside.ph.utexas.edu/Books/Euclid/Elements.pdf Euclid's Elements of Geometry, English translation by Richard Fitzpatrick]
}}
{{Տարերքի գրքեր}}
[[Կատեգորիա:Մաթեմատիկա]]
== '''Սահմանումներ''' ==
# Կետը այն է, որում չկան մասեր։
== Աքսիոմաներ ==
# Կարելի է գծել ուղիղ գիծ ցանկացած կետից դեպի ցանկացած կետ:
== Ընդհանուր հասկացություններ ==
# Եթե մի քանի բան հավասար են մեկ այլ բանի, ապա այդ մի քանի բաներն իրար էլ են հավասար։
[[Պատկեր:Euclids Elements book1 proposition1փ.jpg|center|200px]]
Թող AB ուղիղ գիծը ընկած լինի CD ուղիղ գծի վրա և կազմի CBA և ABD անկյունները։ Ես ասում եմ, որ անկյունները CBA և ABD հաստատ կամ երկու ուղղանկյուն են, կամ գումարը հավասար է երկու ուղղանկյան։
Փաստորեն, եթե CBA-ն հավասար է ABD-ին, ապա դրանք երկու ուղղանկյուն են [Սահմանում 1.10]։ Բայց, եթե ոչ, թող BE-ն գծվի B կետից՝ CD ուղիղ գծին ուղղանկյուն [Պնդում 1.11]։ Այսպիսով, CBE և EBD անկյունները երկու ուղղանկյուն են։ Քանի որ CBE-ն հավասար է երկու անկյունների՝ CBA և ABE-ի, թող EBD-ն ավելացվի երկուսին։ Այսպիսով, անկյունների CBE և EBD գումարը հավասար է CBA, ABE և EBD երեք անկյունների գումարին [Ընդհանուր հասկացություն 2]։
Նույն կերպ, քանի որ DBA-ն հավասար է երկու անկյունների՝ DBE և EBA-ի, թող ABC-ն ավելացվի երկուսին։ Այսպիսով, անկյունների DBA-ի և ABC-ի գումարը հավասար է DBE-ի, EBA-ի, և ABC-ի գումարին [Ընդհանուր հասկացություն 2]։ Բայց անկյունների CBE և EBD գումարը նույնպես ցույց տրվեց, որ հավասար է նույն երեք անկյունների գումարին։ Իսկ բաները, որոնք հավասար են նույնին, նույնպես հավասար են միմյանց [Ընդհանուր հասկացություն 1]։
Հետևաբար, անկյունների CBE և EBD գումարը հավասար է անկյունների DBA և ABC գումարին։ Բայց CBE և EBD-ի գումարը երկու ուղղանկյուն է։ Այսպիսով, ABD և ABC-ի գումարը նույնպես հավասար է երկու ուղղանկյան։
Այսպիսով, եթե երկու եռանկյուններ ունեն երկու կողմեր, որոնք հավասար են միմյանց համապատասխանաբար, բայց դրանցից մեկը ունի հավասար ուղիղ գծերով պարփակված անկյուն, որը մեծ է մյուսի համապատասխան անկյունից, ապա առաջին եռանկյունը նույնպես կունենա հիմք, որը մեծ է երկրորդի հիմքից։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ)։
== Պնդում 25 ==
Այսպիսով, եթե երկու եռանկյուններ ունեն երկու անկյուններ, որոնք հավասար են միմյանց համապատասխանաբար, և մեկ կողմ, որը հավասար է մեկ այլ կողմի՝ կամ հավասար անկյունների կողքին գտնվող, կամ դրանցից մեկի դիմաց գտնվող կողմը, ապա այդ եռանկյունները նույնպես կունենան մնացած կողմերը հավասար իրենց համապատասխան մնացած կողմերին, և մնացած անկյունը՝ հավասար մնացած անկյունին։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ)։
== Պնդում 27 ==