== Պնդում 14 ==
Եթե երկու ուղիղ գծեր, որոնք չեն գտնվում նույն կողմում, հարակից անկյուններ են ստեղծում (որոնց գումարը) հավասար է երկու ուղղանկյան ինչ-որ ուղիղ գծի հետ, դրա վրա գտնվող մի կետում, ապա այդ երկու ուղիղ գծերը կհանդիսանան ուղղահայց (միմյանց նկատմամբ):
[[Պատկեր:Euclids Elements book1 proposition1ձ.jpg|center|200px]]
Թող BC և BD ուղիղ գծերը, որոնք չեն գտնվում նույն կողմում, կազմեն հարակից անկյուններ ABC և ABD, որոնց գումարը հավասար է երկու ուղղանկյան AB ուղիղ գծի հետ B կետում։ Ես ասում եմ, որ BD-ն ուղղահայաց է CB-ի նկատմամբ։
Եթե BD-ն ուղիղ չէ BC-ի նկատմամբ, ապա թող BE-ն լինի ուղիղ CB-ի նկատմամբ։ Հետևաբար, քանի որ AB ուղիղ գիծը ընկած է CBE ուղիղ գծի վրա, անկյունների ABC և ABE գումարը հավասար է երկու ուղղանկյան [Պնդում 1.13]։ Բայց անկյունների ABC և ABD գումարը նույնպես հավասար է երկու ուղղանկյան։ Այսպիսով, CBA և ABE անկյունների գումարը հավասար է
CBA և ABD անկյունների գումարին [Ընդհանուր հասկացություն 1]։ Թող անկյուն CBA-ն հանվի երկուսից։ Հետևաբար, մնացորդ ABE-ն հավասար է մնացորդ ABD-ին [Ընդհանուր հասկացություն 3], փոքրից մեծին։ Սա անհնար է։ Ուստի, BE-ն ուղղահայաց չէ CB-ի նկատմամբ։ Նույն կերպ, կարող ենք ցույց տալ, որ BD-ից բացի որևէ այլ ուղղահայաց գիծ չկա։ Այսպիսով, CB-ն ուղղահայաց է BD-ի նկատմամբ։
Այսպիսով, եթե երկու ուղիղ գծեր, որոնք չեն գտնվում նույն կողմում, կազմեն հարակից անկյուններ (որոնց գումարը) հավասար է երկու ուղղանկյան ինչ-որ ուղիղ գծի հետ, դրա վրա գտնվող մի կետում, ապա այդ երկու ուղիղ գծերը կլինեն ուղիղ միմյանց նկատմամբ։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ):
== Պնդում 15 ==
Եթե երկու ուղիղ գծեր հատում են միմյանց, ապա նրանք ստեղծում են ուղղահայաց հակադարձ անկյուններ, որոնք հավասար են միմյանց։ Թող AB և CD ուղիղ գծերը հատեն միմյանց E կետում։ Ես ասում եմ, որ անկյուն AEC-ն հավասար է անկյունին DEB, իսկ անկյուն CEB-ն՝ անկյունին AED:
[[Պատկեր:Euclids Elements book1 proposition15.jpg|center|200px]]
Քանի որ AE ուղիղ գիծը ընկած է CD ուղիղ գծի վրա՝ կազմելով CEA և AED անկյունները, ապա CEA և AED անկյունների գումարը հավասար է երկու ուղղանկյան [Պնդում 1.13]։ Նույն կերպ, քանի որ DE ուղիղ գիծը ընկած է AB ուղիղ գծի վրա՝ կազմելով AED և DEB անկյունները, ապա AED և DEB անկյունների գումարը նույնպես հավասար է երկու ուղղանկյան [Պնդում 1.13]։ Բայց CEA և AED անկյունների գումարը նույնպես ցույց տրվեց, որ հավասար է երկու ուղղանկյան։ Այսպիսով, CEA և AED անկյունների գումարը հավասար է AED և DEB անկյունների գումարին [Ընդհանուր հասկացություն 1]։ Թող AED-ն հանվի երկուսից։ Այսպիսով, CEA-ի մնացորդը հավասար է BED-ի մնացորդին [Ընդհանուր հասկացություն 3]։ Նույն կերպ կարելի է ցույց տալ, որ CEB և DEA անկյունները նույնպես հավասար են։
Այսպիսով, եթե երկու ուղիղ գծեր հատում են միմյանց, ապա նրանք ստեղծում են ուղղահայաց հակառակ անկյուններ, որոնք հավասար են միմյանց։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ):
== Պնդում 16 ==
Ամեն եռանկյունի համար, երբ կողմերից մեկը երկարացվում է, արտաքին անկյունը մեծ է ներքին և հակադիր անկյուններից յուրաքանչյուրից։
Թող ABC լինի եռանկյուն, և թող դրա կողմերից մեկը՝ BC-ն, երկարացվի D։ Ես ասում եմ, որ արտաքին անկյուն ACD-ն մեծ է ներքին և հակադիր անկյուններից յուրաքանչյուրից՝
CBA և BAC-ից։ Թող AC ուղիղ գիծը կիսվի E կետում [Պնդում 1.10]։ BE-ն միացնելով՝ թող այն երկարացվի մինչև F կետ ուղիղ գծով։ EF-ը հավասար լինի BE-ին [Պնդում 1.3], և FC-ն միացվի, և AC-ն անցկացվի G կետով։
Հետևաբար, քանի որ AE-ն հավասար է EC-ին, և BE-ն հավասար է EF-ին, ապա երկու ուղիղ գծերը՝ AE, EB, հավասար են երկու ուղիղ գծերին՝ CE, EF համապատասխանաբար։
Բացի այդ, անկյուն AEB-ն հավասար է անկյունին FEC, քանի որ դրանք ուղղահայաց հակառակ անկյուններ են [Պնդում 1.15]։ Այսպիսով, հիմքը AB-ն հավասար է հիմքին FC, և եռանկյուն
ABE-ն հավասար է եռանկյուն FEC-ին, իսկ հավասար կողմերով ստեղծված մնացած անկյունները հավասար են համապատասխան մնացած անկյուններին [Պնդում 1.4]։
Այսպիսով, BAE-ն հավասար է ECF-ին։ Բայց ECD-ն մեծ է ECF-ից։ Հետևաբար, ACD-ն մեծ է BAE-ից։ Նմանապես, BC-ն կիսելով, կարելի է ցույց տալ, որ BCG—այսինքն ACD—ն նույնպես մեծ է ABC-ից։
[[Պատկեր:Euclids Elements book1 proposition16.jpg|center|200px]]
Այսպիսով, ցանկացած եռանկյունի համար, երբ կողմերից մեկը երկարացվում է, արտաքին անկյունը մեծ է ներքին և հակադիր անկյուններից յուրաքանչյուրից։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ):
== Պնդում 17 ==
Ցանկացած եռանկյունի համար, ցանկացած երկու անկյունների (գումարը) միասին վերցված փոքր է երկու ուղղանկյունից։
[[Պատկեր:Euclids Elements book1 proposition17.jpg|center|200px]]
Թող ABC լինի եռանկյուն։ Ես ասում եմ, որ եռանկյուն ABC-ի ցանկացած երկու անկյունների (գումարը) միասին վերցված փոքր է երկու ուղղանկյունից։
Թող BC կողմը երկարացվի մինչև D։ Քանի որ ACD անկյունը եռանկյուն ABC-ի արտաքին անկյունն է, այն մեծ է ներքին և հակադիր ABC անկյունից [Պնդում 1.16]։ Թող ACB անկյունը ավելացվի երկուսին։ Այսպիսով, ACD և ACB անկյունների գումարը մեծ է ABC և BCA անկյունների գումարից։ Բայց ACD և ACB անկյունների գումարը հավասար է երկու ուղղանկյան [Պնդում 1.13]։
Այսպիսով, ABC և BCA անկյունների գումարը փոքր է երկու ուղղանկյունից։ Նմանապես, կարելի է ցույց տալ, որ BAC և ACB անկյունների գումարն էլ փոքր է երկու ուղղանկյունից։ Եվ վերջապես, CAB և ABC անկյունների գումարն էլ փոքր է երկու ուղղանկյունից։
Այսպիսով, ցանկացած եռանկյունի համար, ցանկացած երկու անկյունների (գումարը) միասին վերցված փոքր է երկու ուղղանկյունից։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ):
== Պնդում 18 ==
Ցանկացած եռանկյունում ավելի մեծ կողմը դիմաց է գտնվում ավելի մեծ անկյունին։
[[Պատկեր:Euclids Elements book1 proposition18.jpg|center|200px]]
Թող ABC լինի եռանկյուն, որի AC կողմը մեծ է AB-ից։ Ես ասում եմ, որ ABC անկյունը նույնպես մեծ է BCA-ից։ Քանի որ AC-ն մեծ է AB-ից, թող AD-ն լինի հավասար AB-ին [Պնդում 1.3], և թող BD-ն միացվի։ Քանի որ ADB անկյունը եռանկյուն BCD-ի արտաքին անկյունն է, այն մեծ է ներքին և հակադիր DCB անկյունից [Պնդում 1.16]։ Բայց ADB-ն հավասար է ABD-ին, քանի որ AB-ն հավասար է AD-ին [Պնդում 1.5]։ Այսպիսով, ABD-ն նույնպես մեծ է ACB-ից։ Հետևաբար, ABC-ն շատ ավելի մեծ է ACB-ից։ Այսպիսով, ցանկացած եռանկյունում ավելի մեծ կողմը դիմաց է գտնվում ավելի մեծ անկյունին։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ):
== Պնդում 19 ==
Ցանկացած եռանկյունում ավելի մեծ անկյունը դիմաց է գտնվում ավելի մեծ կողմին։
Թող ABC լինի եռանկյուն, որի ABC անկյունը մեծ է BCA-ից։ Ես ասում եմ, որ AC կողմը նույնպես մեծ է AB-ից։ Եթե ոչ, ապա AC-ն կամ հավասար է, կամ փոքր է AB-ից։ Փաստորեն, AC-ն հավասար չէ AB-ին, քանի որ այդ դեպքում ABC անկյունը նույնպես հավասար կլիներ ACB անկյանը [Պնդում 1.5]։ Բայց դա այդպես չէ։ Հետևաբար, AC-ն հավասար չէ AB-ին։ Նույն կերպ, AC-ն փոքր չէ AB-ից, քանի որ այդ դեպքում ABC անկյունը փոքր կլիներ ACB-ից [Պնդում 1.18]։ Բայց դա այդպես չէ։ Հետևաբար, AC-ն ոչ հավասար է, ոչ էլ փոքր AB-ից։ Այսպիսով, AC-ն մեծ է AB-ից։
[[Պատկեր:Euclids Elements book1 proposition19.jpg|center|200px]]
Այսպիսով, ցանկացած եռանկյունում ավելի մեծ անկյունը դիմաց է գտնվում ավելի մեծ կողմին։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ):
== Պնդում 20 ==
Ցանկացած եռանկյունում, ցանկացած երկու կողմերի (գումարը) միասին վերցված մեծ է մնացած (կողմից)։
[[Պատկեր:Euclids Elements book1 proposition20.jpg|center|200px]]
Թող ABC լինի եռանկյուն։ Ես ասում եմ, որ ABC եռանկյունում ցանկացած երկու կողմերի (գումարը) միասին վերցված մեծ է մնացած (կողմից)։ (Այսինքն, BA և AC կողմերի գումարը մեծ է BC-ից, AB և BC կողմերի գումարը մեծ է AC-ից, իսկ BC և CA կողմերի գումարը մեծ է AB-ից)։ Թող BA-ն երկարացվի D կետով, և թող AD-ն հավասար լինի CA-ին [Պնդում 1.3], և թող
DC-ն միացվի։
Քանի որ DA-ն հավասար է AC-ին, ապա անկյուն ADC-ն նույնպես հավասար է ACD-ին [Պնդում 1.5]։ Այսպիսով, BCD-ն մեծ է ADC-ից։ Իսկ DCB եռանկյունում, BCD անկյունն ավելի մեծ է BDC-ից, և ավելի մեծ անկյունը դիմաց է գտնվում ավելի մեծ կողմին [Պնդում 1.19], DB-ն մեծ է BC-ից։ Բայց DA-ն հավասար է AC-ին։ Հետևաբար, BA և AC կողմերի գումարը մեծ է BC-ից։ Նմանապես, կարելի է ցույց տալ, որ AB և BC կողմերի գումարը նույնպես մեծ է CA-ից, և BC և CA կողմերի գումարը մեծ է AB-ից։
Այսպիսով, ցանկացած եռանկյունում ցանկացած երկու կողմերի (գումարը) միասին վերցված մեծ է մնացած (կողմից)։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ):
== Պնդում 21 ==
Եթե եռանկյունի կողմերից մեկի վրա նրա ծայրակետերից ներս կառուցվեն երկու ուղիղ գծեր, ապա կառուցված ուղիղ գծերը փոքր կլինեն եռանկյունի մյուս երկու կողմերից, սակայն կկազմեն ավելի մեծ անկյուն։
[[Պատկեր:Euclids Elements book1 proposition21.jpg|center|200px]]
Թող BD և DC երկու ներքին ուղիղ գծեր կառուցված լինեն եռանկյուն ABC-ի BC կողմի վրա՝ իր B և C ծայրերից։ Ես ասում եմ, որ BD և DC-ն փոքր են եռանկյունի մյուս երկու կողմերից՝ BA-ից և AC-ից, սակայն ընդգրկում են անկյուն BDC, որը մեծ է BAC-ից։ Թող BD-ն երկարացվի E կետով։ Եվ քանի որ ցանկացած եռանկյունում (ցանկացած) երկու կողմերի գումարը մեծ է մնացած (կողմից) [Պնդում 1.20], ապա եռանկյուն ABE-ում AB և AE կողմերի գումարը մեծ է BE-ից։ Թող EC-ն ավելացվի երկուսին։ Այսպիսով, BA և AC կողմերի գումարը մեծ է BE և EC գումարից։ Նույն կերպ, եռանկյուն CED-ում CE և ED կողմերի գումարը մեծ է CD-ից։ Թող DB-ն ավելացվի երկուսին։ Այսպիսով, CE և EB կողմերի գումարը մեծ է CD և
DB գումարից։ Սակայն ցույց տրվեց, որ BA և AC կողմերի գումարը մեծ է BE և EC գումարից։ Հետևաբար, BA և AC կողմերի գումարը շատ ավելի մեծ է BD և DC գումարից։
Կրկին, քանի որ ցանկացած եռանկյունում արտաքին անկյունը մեծ է ներքին և հակադիր անկյուններից [Պնդում 1.16], ապա եռանկյուն CDE-ում արտաքին անկյուն BDC-ն մեծ է CED-ից։ Հետևաբար, նույն պատճառով, եռանկյուն ABE-ում արտաքին անկյուն CEB-ն նույնպես մեծ է BAC-ից։ Բայց BDC-ն ցույց տրվեց, որ մեծ է CEB-ից։ Հետևաբար, BDC-ն շատ ավելի մեծ է
BAC-ից։
Այսպիսով, եթե երկու ներքին ուղիղ գծեր կառուցված են եռանկյունի կողմերից մեկի վրա՝ նրա ծայրերից, ապա կառուցված ուղիղ գծերը փոքր կլինեն եռանկյունի մյուս երկու կողմերից, սակայն ընդգրկում են ավելի մեծ անկյուն։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ):
== Պնդում 22 ==
Եռանկյուն կառուցելու համար երեք ուղիղ գծերից, որոնք հավասար են երեք տրված ուղիղ գծերին, անհրաժեշտ է, որ ցանկացած երկու ուղիղ գծերի (գումարը) միասին վերցված մեծ լինի մնացածից։ Սա հիմնված է այն փաստի վրա, որ ցանկացած եռանկյունում ցանկացած երկու կողմերի (գումարը) միասին վերցված մեծ է մնացած (կողմից) [Պնդում 1.20]։
[[Պատկեր:Euclids Elements book1 proposition22.jpg|center|200px]]
Թող A, B և C-ն լինեն երեք տրված ուղիղ գծեր, որոնցից ցանկացած երկու ուղիղ գծերի (գումարը) միասին վերցված մեծ է մնացածից։ (Այսինքն, A և B գումարը մեծ է C-ից, A և C գումարը մեծ է B-ից, և B և C գումարը մեծ է A-ից): Պետք է կառուցել եռանկյուն, որի կողմերը հավասար են A, B և C ուղիղ գծերին։
Թող կամայական ուղիղ գիծ DE տեղադրվի, ավարտվի D-ում և լինի անսահման դեպի E-ն։ Թող DF-ը հավասար լինի A-ին, FG-ն հավասար լինի B-ին, և GH-ն հավասար լինի C-ին [Պնդում 1.3]։ Թող շրջան DKL կառուցվի կենտրոնով F-ում և շառավղով FD։ Նույն կերպ, թող շրջան KLH կառուցվի կենտրոնով G-ում և շառավղով GH։ Թող KF և KG գծերը միացվեն։ Ես ասում եմ, որ եռանկյուն KFG-ն կառուցված է A, B, և C ուղիղ գծերից։
Քանի որ F կետը շրջանի DKL կենտրոնն է, FD-ն հավասար է FK-ին։ Բայց FD-ն հավասար է A-ին։ Հետևաբար, KF-ն նույնպես հավասար է A-ին։ Նույն կերպ, G կետը շրջանի KLH կենտրոնն է, GH-ն հավասար է GK-ին։ Բայց GH-ն հավասար է C-ին։ Հետևաբար, KG-ն նույնպես հավասար է C-ին։ FG-ն նույնպես հավասար է B-ին։ Այսպիսով, KF, FG, և GK ուղիղ գծերը հավասար են
A, B, և C ուղիղ գծերին (համապատասխանաբար):
Այսպիսով, եռանկյուն KFG-ն կառուցված է KF, FG, և GK ուղիղ գծերից, որոնք հավասար են տրված A, B, և C ուղիղ գծերին (համապատասխանաբար): (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ):
== Պնդում 23 ==
Կառուցել ուղիղ անկյուն, որը հավասար է տրված ուղիղ անկյանը՝ տրված ուղիղ գծի վրա տրված կետում։
[[Պատկեր:Euclids Elements book1 proposition23.jpg|center|200px]]
Թող AB լինի տրված ուղիղ գիծը, A՝ նրա վրա գտնվող տրված կետը, և DCE՝ տրված ուղիղ անկյունը։ Ուրեմն անհրաժեշտ է կառուցել DCE ուղիղ անկյանին հավասար անկյուն FAG
AB տրված ուղիղ գծի վրա A կետում։
Թող D և E կետերը վերցվեն պատահականորեն ուղիղ գծերի CD և CE վրա (համապատասխանաբար), և թող DE-ն միացվի։ Թող եռանկյուն AFG կառուցվի երեք ուղիղ գծերից, որոնք հավասար են
CD, DE, և CE ուղիղ գծերին, այնպես, որ CD-ն հավասար լինի AF-ին, CE-ն հավասար լինի AG-ին, և DE-ն հավասար լինի FG-ին [Պնդում 1.22]։
Հետևաբար, քանի որ երկու ուղիղ գծերը՝ DC և CE, հավասար են երկու ուղիղ գծերին՝ FA և AG, իսկ DE հիմքը հավասար է FG-ին, ապա անկյուն DCE-ն հավասար է անկյուն FAG-ին [Պնդում 1.8]։
Այսպիսով, FAG ուղիղ անկյունը, որը հավասար է տրված DCE ուղիղ անկյանը, կառուցված է AB տրված ուղիղ գծի վրա A տրված կետում։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ)։
== Պնդում 24 ==
Եթե երկու եռանկյուններ ունեն երկու կողմեր, որոնք հավասար են միմյանց համապատասխանաբար, բայց դրանցից մեկը ունի հավասար ուղիղ գծերով պարփակված անկյուն, որը մեծ է մյուսի համապատասխան անկյունից, ապա առաջին եռանկյունը նույնպես կունենա հիմք, որը մեծ է երկրորդի հիմքից։
[[Պատկեր:Euclids Elements book1 proposition24.jpg|center|200px]]
Թող ABC և DEF լինեն երկու եռանկյուններ, որոնց AB և AC կողմերը հավասար են DE և DF կողմերին, համապատասխանաբար։ (Այսինքն, AB հավասար է DE-ին, իսկ AC հավասար է DF-ին)։ Թող դրանք նաև ունենան միևնույն անկյունը A կետում և D կետում։ Ես ասում եմ, որ հիմքը BC-ն նույնպես մեծ է հիմքից EF։
Քանի որ անկյուն BAC-ը մեծ է EDF անկյունից, թող EDG անկյունը, որը հավասար է BAC-ին, կառուցվի D կետում DE ուղիղ գծի վրա [Պնդում 1.23]։ Թող DG-ն հավասար լինի AC-ին կամ
DF-ին [Պնդում 1.3], և թող EG և FG միացվեն։
Քանի որ AB-ն հավասար է DE-ին և AC-ն հավասար է DG-ին, BA և AC ուղիղ գծերը հավասար են ED և DG ուղիղ գծերին, համապատասխանաբար։ BAC անկյունը նույնպես հավասար է EDG անկյանը։ Հետևաբար, BC հիմքը հավասար է EG հիմքին [Պնդում 1.4]։ Նույնպես, քանի որ DF-ն հավասար է DG-ին, DGF անկյունը նույնպես հավասար է DFG անկյանը [Պնդում 1.5]։ Այսպիսով, DFG-ն մեծ է EGF-ից։ Եվ քանի որ եռանկյուն EFG-ն ունի անկյուն EFG, որը մեծ է EGF-ից, իսկ մեծ անկյունը դիմաց է գտնվում ավելի մեծ կողմին [Պնդում 1.19], EG կողմը մեծ է EF-ից։ Բայց EG-ն հավասար է BC-ին։ Այսպիսով, BC-ն նույնպես մեծ է EF-ից։
Այսպիսով, եթե երկու եռանկյուններ ունեն երկու կողմեր, որոնք հավասար են միմյանց համապատասխանաբար, բայց դրանցից մեկը ունի հավասար ուղիղ գծերով պարփակված անկյուն, որը մեծ է մյուսի համապատասխան անկյունից, ապա առաջին եռանկյունը նույնպես կունենա հիմք, որը մեծ է երկրորդի հիմքից։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ)։
== Պնդում 25 ==
Եթե երկու եռանկյուններ ունեն երկու կողմեր, որոնք հավասար են միմյանց համապատասխանաբար, բայց դրանցից մեկի հիմքը մեծ է մյուսի հիմքից, ապա առաջին եռանկյունն ունի նաև հավասար ուղիղ գծերով պարփակված անկյուն, որը մեծ է մյուսի համապատասխան անկյունից։
[[Պատկեր:Euclids Elements book1 proposition25.jpg|center|200px]]
Թող ABC և DEF լինեն երկու եռանկյուններ, որոնց AB և AC կողմերը հավասար են DE և DF կողմերին, համապատասխանաբար։ (Այսինքն՝ AB հավասար է DE-ին, AC հավասար է DF-ին): Թող նաև BC հիմքը մեծ լինի EF հիմքից։ Ես ասում եմ, որ BAC անկյունը նույնպես մեծ է EDF անկյունից։
Եթե ոչ, BAC անկյունը կամ հավասար է, կամ փոքր է EDF անկյունից։ Սակայն BAC անկյունը հավասար չէ EDF անկյունին, քանի որ այդ դեպքում BC հիմքը նույնպես հավասար կլիներ EF հիմքին [Պնդում 1.4]։ Բայց դա այդպես չէ։ Նույնպես, BAC անկյունը փոքր չէ EDF անկյունից, քանի որ այդ դեպքում BC հիմքը նույնպես փոքր կլիներ EF հիմքից [Պնդում 1.24]։ Բայց դա նույնպես այդպես չէ։ Հետևաբար, BAC անկյունը ոչ հավասար է, ոչ էլ փոքր EDF անկյունից։ Այսպիսով, BAC անկյունը մեծ է EDF անկյունից։
Այսպիսով, եթե երկու եռանկյուններ ունեն երկու կողմեր, որոնք հավասար են միմյանց համապատասխանաբար, բայց դրանցից մեկի հիմքը մեծ է մյուսի հիմքից, ապա առաջին եռանկյունն ունի նաև հավասար ուղիղ գծերով պարփակված անկյուն, որը մեծ է մյուսի համապատասխան անկյունից։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ)։
== Պնդում 26 ==
Եթե երկու եռանկյուններ ունեն երկու անկյուններ, որոնք հավասար են միմյանց համապատասխանաբար, և մեկ կողմ, որը հավասար է մեկ այլ կողմի՝ կամ հավասար անկյունների կողքին գտնվող, կամ դրանցից մեկի դիմաց գտնվող կողմը, ապա այդ եռանկյունները նույնպես կունենան մնացած կողմերը հավասար իրենց համապատասխան մնացած կողմերին, և մնացած անկյունը՝ հավասար մնացած անկյունին։
Թող ABC և DEF լինեն երկու եռանկյուններ, որոնց երկու անկյունները՝ ABC և BCA, հավասար են DEF և EFD անկյուններին, համապատասխանաբար։ (Այսինքն՝ ABC հավասար է DEF-ին, իսկ
BCA հավասար է EFD-ին)։ Թող նրանք ունենան նաև մեկ կողմ, որը հավասար է մեկ այլ կողմի։ Նախ, թող դա լինի հավասար անկյունների կողքին գտնվող կողմը։ (Այսինքն՝ BC հավասար է
EF-ին): Ես ասում եմ, որ նրանք կունենան մնացած կողմերը հավասար իրենց համապատասխան մնացած կողմերին։ (Այսինքն՝ AB հավասար է DE-ին, իսկ AC հավասար է DF-ին)։ Եվ նրանք կունենան մնացած անկյունը՝ հավասար մնացած անկյունին։ (Այսինքն՝ BAC հավասար է EDF-ին)։
[[Պատկեր:Euclids Elements book1 proposition26.jpg|center|200px]]
Եթե AB հավասար չէ DE-ին, ապա դրանցից մեկը մեծ է։ Թող AB-ն լինի մեծը, և BG-ն թող հավասար լինի DE-ին [Պնդում 1.3], և թող GC-ն միացվի։
Քանի որ BG-ն հավասար է DE-ին, իսկ BC-ն հավասար է EF-ին, ապա GB, BC ուղիղ գծերը հավասար են DE, EF ուղիղ գծերին, համապատասխանաբար։ Եվ GBC անկյունը հավասար է DEF անկյունին։ Այսպիսով, GC հիմքը հավասար է DF հիմքին, և GBC եռանկյունը հավասար է DEF եռանկյունին։ Եվ հավասար կողմերի դիմաց ընկած մնացած անկյունները նույնպես հավասար են համապատասխան մնացած անկյուններին [Պնդում 1.4]։ Այսպիսով, GCB հավասար է DFE-ին։ Բայց DFE-ն ընդունվում էր հավասար BCA-ին։ Այսպիսով, BCG-ն նույնպես հավասար է BCA-ին, ինչը անհնար է։ Հետևաբար, AB-ն հավասար չէ DE-ին։ Այսպիսով, դրանք հավասար են։ Եվ BC-ն նույնպես հավասար է EF-ին։ Այսպիսով, AB, BC ուղիղ գծերը հավասար են DE, EF ուղիղ գծերին, համապատասխանաբար։ Եվ ABC անկյունը հավասար է DEF անկյունին։ Այսպիսով, AC հիմքը հավասար է DF հիմքին, և մնացած անկյունը BAC հավասար է EDF անկյունին [Պնդում 1.4]։
Բայց, կրկին, թող հավասար անկյունների դիմաց ընկած կողմերը հավասար լինեն։ Օրինակ, AB-ն հավասար է DE-ին։ Ես ասում եմ, որ մնացած կողմերը նույնպես հավասար կլինեն։ (Այսինքն՝ AC-ն հավասար է DF-ին, և BC-ն հավասար է EF-ին): Հետևաբար, մնացած անկյունը BAC հավասար է մնացած անկյունին EDF-ին։
Այսպիսով, եթե երկու եռանկյուններ ունեն երկու անկյուններ, որոնք հավասար են միմյանց համապատասխանաբար, և մեկ կողմ, որը հավասար է մեկ այլ կողմի՝ կամ հավասար անկյունների կողքին գտնվող, կամ դրանցից մեկի դիմաց գտնվող կողմը, ապա այդ եռանկյունները նույնպես կունենան մնացած կողմերը հավասար իրենց համապատասխան մնացած կողմերին, և մնացած անկյունը՝ հավասար մնացած անկյունին։ (Սա հենց այն է, ինչ անհրաժեշտ էր ցույց տալ)։