Ուստի, AB մակերեսի քառակուսի արմատը այն ուղիղ գիծն է, որը ռացիոնալ մակերեսի հետ միասին սահմանում է մեդիալ ամբողջ: Եվ սա այն էր, ինչ անհրաժեշտ էր ապացուցել:
==Պնդում 96==
Եթե մակերեսը կազմված է ռացիոնալ (ուղիղ գծի) և վեցերորդ ապոտոմի միջոցով, ապա այդ մակերեսի քառակուսի արմատը այն (ուղիղ գիծն) է, որը մեդիալ (մակերեսի) հետ միասին սահմանում է մեդիալ ամբողջ:
Թող AB մակերեսը կազմված լինի ռացիոնալ (ուղիղ գծի) AC-ի և վեցերորդ ապոտոմի AD-ի միջոցով։ Ասում եմ, որ AB մակերեսի քառակուսի արմատը այն (ուղիղ գիծն) է՝ AH, որը մեդիալ (մակերեսի) հետ միասին սահմանում է մեդիալ ամբողջ:
Թող DG-ն լինի AD-ի կցորդը։ Ուստի AG-ն և GD-ն ռացիոնալ ուղիղ գծեր են, որոնք համաչափելի են միայն քառակուսով [Տե՛ս «Տարրեր», 10.73], և ոչ մեկը երկարությամբ համաչափելի չէ նախապես տրված ռացիոնալ ուղիղ գծի՝ AC-ի հետ, և ամբողջ AG-ի վրա կառուցված քառակուսին ավելին է, քան GD-ի վրա կառուցված քառակուսին, ինչ-որ ուղիղ գծի վրա կառուցված քառակուսու չափ, որը երկարությամբ անհամաչափելի է AG-ի հետ [Տե՛ս «Տարրեր», 10.16]։
Ուստի, քանի որ AG-ի վրա կառուցված քառակուսին ավելին է, քան GD-ի վրա կառուցված քառակուսին ինչ-որ ուղիղ գծի վրա կառուցված քառակուսու չափ, որը երկարությամբ անհամաչափ է AG-ի հետ, ապա եթե մակերեսը, որը հավասար է GD-ի վրա կառուցված քառակուսու չորրորդ մասին, կիրառվի AG-ի վրա, ապա այն բաժանում է (AG-ը) երկարությամբ անհամաչափ մասերի [Տե՛ս «Տարրեր», 10.18]։
Ուստի, թող կետ E-ն բաժանի DG-ն ։ Թող մակերեսը, որը հավասար է EG-ի վրա կառուցված քառակուսուն, կիրառված լինի AG-ի վրա, ու այն լինի AF և FG ուղղագծերի միջև պարունակված ուղղանկյուն։ Ուստի, AF-ը երկարությամբ անհամաչափելի է FG-ի հետ։ Եվ ինչպես AF-ն է հարաբերվում FG-ի հետ, այնպես էլ AI-ն FK-ի հետ [Տե՛ս «Տարրեր», 6.1]։ Ուստի, AI-ն անհամաչափ է FK-ի հետ [Տե՛ս «Տարրեր», 10.11]։
Քանի որ AG-ն և AC-ն ռացիոնալ ուղիղ գծեր են, որոնք միայն համաչափելի են քառակուսով, AK-ը միջինական մակերես է [Տե՛ս «Տարրեր», 10.21]։ Կրկին, քանի որ AC-ն և DG-ն ռացիոնալ ուղիղ գծեր են, որոնք երկարությամբ անհամաչափ են, DK-ն նույնպես միջինական մակերես է [Տե՛ս «Տարրեր», 10.21]։ Ուստի, քանի որ AG-ն և GD-ն համաչափելի են միայն քառակուսով, AG-ն երկարությամբ անհամաչափելի է GD-ի հետ։ Եվ ինչպես AG-ն է հարաբերում GD-ի հետ, այնպես էլ AK-ը KD-ի հետ [Տե՛ս «Տարրեր», 6.1]։ Ուստի, AK-ը անհամաչափ է KD-ի հետ [Տե՛ս «Տարրեր», 10.11]։
Թող կառուցված լինի LM քառակուսին, որը հավասար է AI-ին։ Թող NO-ն, որը հավասար է FK-ին, և նույն անկյան շուրջը, հանված լինի LM-ից։ Ուստի, LM և NO քառակուսիները կառուցված են նույն անկյան շուրջը [Տե՛ս «Տարրեր», 6.26]։ Թող PR-ը լինի նրանց ընդհանուր անկյունագիծը, և թող մնացած պատկերը ամբողջացվի։
Այսպիսով, վերոնշյալ նմանությամբ, մենք կարող ենք ցույց տալ, որ LN-ը AB-ի մակերեսի քառակուսի արմատն է։ Ասում եմ, որ LN-ը այն ուղիղ գիծն է, որը միջինական մակերեսի հետ միջինական ամբողջականություն է կազմում։
Քանի որ ցույց է տրված որ AK-ն միջինական մակերես է և հավասար է LP և PN քառակուսիների գումարին, ապա LP և PN-ի վրա կառուցված քառակուսիների գումարը նույնպես միջինական է։ Նորից, քանի որ DK-ն ցույց է տրված որպես միջինական մակերես և հավասար է LP և PN ուղղագծերի միջև պարունակված ուղղանկյան կրկնապատիկին, ապա այդ ուղղանկյան կրկնապատիկը նույնպես միջինական է։
Քանի որ AK-ն ցույց է տրված որպես անհամաչափ DK-ի հետ, ուրեմն LP և PN ուղղագծերի վրա կառուցված քառակուսիների գումարը նույնպես անհամաչափ է այդ ուղղանկյան կրկնապատիկի հետ։ Եվ քանի որ AI-ն անհամաչափ է FK-ի հետ, LP-ի վրա կառուցված քառակուսին նույնպես անհամաչափ է PN-ի վրա կառուցված քառակուսու հետ։