ACDB-ն զուգահեռագիծ պատկեր է և BC-ն դրա անկյունագիծն է։ Պնդումն այն է, որ ACDB զուգահեռագծում հակադիր կողմերը և անկյունները հավասար են միմյանց և BC անկյունագիծը կիսում է այն հավասար մասերի։
Քանի որ AB ուղիղը զուգահեռ է CD ուղղին և BC ուղիղը հատում է դրանք, խաչադիր ABC և BCD անկյունները հավասար են միմյանց [[[#Պնդում 29|Պնդում 1.29]] ]։ Կրկին, քանի որ AC և BD ուղիղները զուգահեռ են և BC ուղիղը հատում է դրանք, խաչադիր ACB և CBD անկյունները հավասար են միմյանց [[[#Պնդում 29|Պնդում 1.29]] ]։
Այսպիսով, ABC-ն և BCD-ն երկու եռանկյուններ են, որոնց համապատասխան ABC և BCA ու BCD և CBD անկյունները համապատասխանաբար հավասար են միմյանց և նրանց մի կողմը՝ հավասար անկյուններով, ընդհանուր է։ Դա BC կողմն է։ Հետևաբար, դրանց համապատասխան կողմերը նունյպես հավասար են և երրորդ անկյունը նույնպես համապատասխանաբար հավասար է [[[#Պնդում 26|Պնդում 1.26]] ]։ Հետևաբար, AB կողմը հավասար է CD կողմին և AC կողմը հավասար է BD կողմին։ Ավելին, BAC անկյունը հավասար է CDB անկյանը։ Քանի որ ABC անկյունը հավասար է BCD անկյանը և CBD անկյունը հավասար է ACB անկյանը, ամբողջ ABD անկյունը, հետևաբար, հավասար է ամբողջ ACD անկյանը։ Ցույց է տրված նաև, որ BAC-ն հավասար է CDB-ին։
Հետևաբար, զուգահեռագիծ պատկերում հակադիր կողմերը և անկյունները հավասար են միմյանց։
Նաև պնդումն այն է, որ անկյունագիծը կիսում է այն երկու հավասար մասի։ Քանի որ AB կողմը հավասար է CD կողմին և BC-ն ընդհանուր է AB և BC ուղիղները, համապատասխանաբար, հավասար են DC և CB ուղիղներին։ Նաև ABC անկյունը հավասար է BCD անկյանը։ Հետևաբար, AC հիմքը նույնպես հավասար է DB-ին և ABC եռանկյունը հավասար է BCD եռանկյանը [[[#Պնդում 4|Պնդում 1.4]] ]։
Հետևաբար, BC անկյունագիծը կիսում է ACDB զուգահեռագիծը երկու հավասար մասի։ Սա այն էր, ինչ պետք էր ապացուցել։