Changes
/* Պնդում 33 */
AB և CD ուղիղները հավասար են և զուգահեռ, իսկ AC և BD ուղիղները միացնում են դրանք նույն կողմի վրա։ Պնդումն այն է, որ AC և BD ուղիղները նույնպես հավասար են և զուգահեռ։
Գծված է BC անկյունագիծը։ Քանի որ AB-ն զուդահեռ է CD-ին և BC-ն հատում է դրանք, ABC և BCD խաչադիր անկյունները հավասար են միմյանց [[[#Պնդում 29|Պնդում 1.29]] ]։ Քանի որ AB-ն հավասար է CD-ին և BC-ն ընդհանուր է, AB և BC ուղիղները հացվասար են DC և CB ուղիղներին։ Նաև ABC անկյունը հավասար է BCD անկյանը։ Հետևաբար, AC հիմքը հավասար է BD հիմքին և ABC եռանկյունը հավասար է BCD եռանկյանը։ Մյուս անկյունները նույնպես հավասար կլինեն համապատասխան անկյուններին, որոնք հենվում են հավասար կեղմերի վրա [[[#Պնդում 4|Պնդում 1.4]] ]։ Հետևաբար, ACB անկյունը հավասար է CBD անկյանը։ Նաև, քանի որ BC ուղիղը, որը հատում է AC և BD ուղիղները, կազմում է խաչադիր և հավասար ACB և CBD անկյունները, AC ուղիղը, հետևաբար, հավասար է BD ուղղին [[[#Պնդում 27|Պնդում 1.27]] ]։ Նաև ցույց է տրված, որ AC ուղիղը հավասար է BD ուղղին:
Հետևաբար, ուղիղները, որոնք միացնում են հավասար և զուգահեռ ուղիղներ նույն կողմի վրա, նույնպես հավասար են և զուգահեռ։ Սա այն էր, ինչ պետք էր ապացուցել։