Changes

Տարերք/Գիրք 10

Ավելացվել է 4924 բայտ, 5 Դեկտեմբեր
Այսպիսով, LP և PN հատվածները ռացիոնալ ուղիղ գծեր են, որոնք համաչափ են միայն քառակուսիներով: Ուստի, LN-ն ապոտոմ է [Տե՛ս «Տարրեր» 10.73]: Եվ LN-ն AB մակերեսի քառակուսի արմատն է: Ուստի, AB մակերեսի քառակուսի արմատը ապոտոմ է:
Ուստի, եթե մակերեսը բաղկացած է ռացիոնալ ուղիղ գծից և առաջին ապոտոմեից, ապա այդ մակերեսի քառակուսի արմատը նույնպես ապոտոմե է:
 
 
==Պնդում 92==
Եթե մակերեսը բաղկացած է ռացիոնալ ուղիղ գծից և երկրորդ ապոտոմից, ապա այդ մակերեսի քառակուսի արմատը հանդիսանում է միջին ռացիոնալի առաջին ապոտոմ:
Թող AB մակերեսը, բաղկացած լինի AC ռացիոնալ ուղիղ գծից, և երկրորդ AD ապոտոմից: Այսպիսով, AB-ի մակերեսի քառակուսի արմատը հանդիսանում է միջին ուղիղ գծի առաջին ապոտոմ։
Թող DG-ն լինի AD-ի կցորդը: Այսպիսով, AG-ն և GD-ն ռացիոնալ (ուղիղ գծեր) են, որոնք համաչափելի են միայն քառակուսիներով [Տե՛ս «Տարրեր», 10.73], և կցորդ DG-ն համաչափելի է (երկարությամբ) նախապես սահմանված ռացիոնալ (ուղիղ գծի) AC-ի հետ, և ամբողջ AG-ի վրա կառուցված քառակուսին ավելի մեծ է, քան հավելված GD-ի վրա կառուցված քառակուսին, որոշ ուղիղ գծի վրա կառուցված քառակուսով, որը համաչափելի է (երկարությամբ) AG-ի հետ [Տե՛ս «Տարրեր», 10.12]: Ուստի, քանի որ AG-ի վրա կառուցված քառակուսին ավելի մեծ է, քան GD-ի վրա կառուցված քառակուսին որոշ ուղիղ գծի վրա կառուցված քառակուսով, եթե GD-ի վրա կառուցված քառակուսու մեկ չորրորդին հավասար մակերես կցվի AG-ին և մնա չլրացված քառակուսի պատկերով, ապա այն բաժանում է AG-ն մասերի, որոնք համաչափելի են երկարությամբ [Տե՛ս «Տարրեր», 10.17]:
Թող կետ E-ն բաժանի DG-ն երկու մասի: Եվ թող AG-ին կիրառվի EG-ի վրա կառուցված քառակուսուն հավասար մակերես, մնալով չլրացված քառակուսի պատկերով: Թող դա լինի AF-ի և FG-ի պարունակած ուղղանկյունը: Այսպիսով, AF-ը համաչափելի է FG-ի հետ (երկարությամբ): Այսպիսով, AG-ն նույնպես համաչափելի է AF-ի և FG-ի հետ (երկարությամբ) [Տե՛ս «Տարրեր», 10.15]: AG-ն ռացիոնալ ուղիղ գիծ է և անհամաչափելի է AC-ի հետ: AF-ն և FG-ն նույնպես ռացիոնալ (ուղիղ գծեր են) և անհամաչափելի են AC-ի հետ [Տե՛ս «Տարրեր», 10.13]:
Այսպիսով, AI-ն և FK-ն մեդիալ մակերեսներ են [Տե՛ս «Տարրեր», 10.21]: Կրկին, քանի որ DE-ն համաչափելի է EG-ի հետ (երկարությամբ), DG-ն նույնպես համաչափելի է DE-ի և EG-ի հետ [Տե՛ս «Տարրեր», 10.15]: Բայց DG-ն համաչափելի է նաև AC-ի հետ, հետևաբար DE-ն և EG-ն նույնպես ռացիոնալ են և համաչափելի են AC-ի հետ: Այսպիսով, DH-ն և EK-ն նույնպես ռացիոնալ մակերեսներ են [Տե՛ս «Տարրեր», 10.19]:
Ուստի, թող կառուցվի LM քառակուսին, որը հավասար է AI-ին: Եվ թող LM-ից հանվի NO-ն, որը հավասար է FK-ին և ունի նույն LPM անկյունը: Այսպիսով, LM և NO քառակուսիները ունեն ընդհանուր անկյունագիծ [Տե՛ս «Տարրեր», 6.26]: Թող PR-ը լինի նրանց (ընդհանուր) անկյունագիծը, և թող գծվի (մնացած) պատկերը:
Հետևաբար, քանի որ AI-ն և FK-ն մեդիալ մակերեսներ են և հավասար են LP-ի և PN-ի վրա կառուցված քառակուսիներին համապատասխանաբար, հետևաբար LP-ի և PN-ի վրա կառուցված քառակուսիները նույնպես մեդիալ են: Ուստի, LP-ն և PN-ն նույնպես մեդիալ ուղիղ գծեր են, որոնք համաչափելի են միայն քառակուսիներով: Եվ քանի որ AF-ի և FG-ի պարունակած ուղղանկյունը հավասար է EG-ի վրա կառուցված քառակուսուն, հետևաբար ինչպես AF-ն է EG-ի նկատմամբ, այնպես էլ EG-ն է FG-ի նկատմամբ [Տե՛ս «Տարրեր», 10.17]: Բայց ինչպես AF-ն է EG-ի նկատմամբ, այնպես էլ AI-ն է EK-ի նկատմամբ: Եվ ինչպես EG-ն է FG-ի նկատմամբ, այնպես էլ EK-ն՝ FK-ի նկատմամբ [Տե՛ս «Տարրեր», 6.1]:
Ուստի, EK-ն AI-ի և FK-ի միջին համեմատականն է: