Changes

Տարերք/Գիրք 6

Ավելացվել է 770 բայտ, 11 Դեկտեմբեր
Նման (հավասարանկյուն) եռանկյուններում կողերն ունեն համեմատական հարաբերություն, և այն կողմերը, որոնք ունեն հավասար անկյուններ, համապատասխանում են միմյանց:
[[Պատկեր:Pndum4.png|center|200px]]
Դիցուք, ABC և DCE լինեն նման եռանկյուններ, որտեղ ABC անկյունը հավասար է DCE անկյանը, և BAC անկյունը՝ CDE անկյանը, և, ավելին, ACB անկյունը՝ CED-ին:Կարող ենք նշել, որ ABC և DCE եռանկյուններում համապատասխանաբար անկյունների կողմերն ունեն համեմատական հարաբերություն, և (կողմերը), որոնք համապատասխանաբար ունեն հավասար անկյուններ, համընկնում են:
Եկեք BC գիծը տեղադրենք CE-ի վրա։ Քանի որ, ABC և ACB անկյունները փոքր են երկու ուղիղ-անկյուններից[Պնդ.1.17], և ACB անկյունը հավասար է DEC անկյանը, հետևաբար, ABC և DEC անկյունները փոքր են երկու ուղիղ-անկյուններից։ Այսպիսով, BA և ED գծերը, որոնք երկարացվել են, կհանդիպեն [Հավ. 5]։ Դրանք երկարացվելով,ի վերջո հանդիպում են F կետում։
Եթե երկու եռանկյունները ունեն համաչափ կողմեր, ապա եռանկյունները կլինեն նման (հավասարանկյուն), և կունենան անկյուններ, որոնք համապատասխանում են համաչափ կողմերին։
[[Պատկեր:Pndum5.png|center|200px]]
Դիցուք, ABC և DEF լինեն երկու եռանկյուններ, որոնց կողմերը համաչափ են, (այնպես որ) ինչպես AB հարաբերում է BC կողմին, այնպես էլ DE հարաբերում է EF կողմին, և ինչպես BC հարաբերում է CA-ին, այնպես էլ EF FD կողմին, և ավելին, ինչպես BA-ն է AC-ի նկատմամբ, այնպես էլ ED-ն է DF-ի նկատմամբ։ ABC եռանկյունը հավասարանկյուն է, որը հարաբերում է DEF եռանկյանը, և (այդ եռանկյունները) կունենան անկյուններ, որոնք համապատասխանում են համաչափ կողմերին։ Այդպիսով, ABC (անկյունը) (հավասար է) DEF անկյանը, BCA՝ EFD-ին, և, ավելին, BAC՝ EDF-ին։
Դիցուք, FEG անկյունը, որը հավասար է ABC անկյանը, և EFG, որը հավասար է ACB անկյանը, գտնվում են EF ուղիղ գծի վրա՝ համապատասխանաբար E և F կետերում [Պնդ. 1.23]։ Այսպիսով, A (անկյան) մյուս մասը հավասար է G անկյան մյուս մասին[Պնդ. 1.32]։
Եթե երկու եռանկյուններն ունեն համապատասխան անկյունը հավասար է, և այդ հավասար անկյունների կողմերը համաչափ են, ապա եռանկյունները կլինեն հավասարանկյուն և կունենան անկյուններ, որոնք համապատասխանում են այդ կողմերին:
[[Պատկեր:Pndum6.png|center|200px]]
Դիցուք, ABC և DEF լինեն երկու եռանկյուններ, որոնցում BAC անկյունը հավասար է EDF անկյանը (համապատասխանաբար), և այդ անկյունների կողմերը համաչափ են ,այնպես որ,BA հարաբերվի AC կողմին այնպես, ինչպես ED կողմը DF-ին։ABC եռանկյունը հավասարանկյուն է DEF եռանկյանը, որտեղ ABC անկյունը հավասար է DEF անկյանը, իսկ ACB անկյունը DFE անկյանը:
FDG անկյունը, որը հավասար է BAC և EDF անկյուններին, և DFG անկյունը, որը հավասար է ACB անկյանը, կառուցվեն AF ուղիղ գծի վրա՝ համապատասխանաբար D և F կետերում [Պնդ. 1.23]։ Այսպիսով, B-ի առընթեր անկյունը հավասար է G-ի առընթեր անկյանը [Պնդ. 1.32]։
Եթե երկու եռանկյուններն ունեն մեկ անկյուն, որոնք հավասար են իրար ,և մյուս անկյունների կողմերն ունեն համապատասխանաբար նույն հարաբերությունը, իսկ մնացած անկյունները երկուսն էլ փոքր են կամ երկուսն էլ փոքր չեն ուղիղ անկյուններից, ապա եռանկյունները կլինեն նման (հավասարանկյուն), և կունենան հավասար անկյուններ, որոնց համապատասխան կողմերը կունենան նույն հարաբերությունը։
[[Պատկեր:Pndum7.png|center|200px]]
Դիցուք, ABC և DEF երկու եռանկյուններ են, որի BAC անկյունը հավասար է EDF անկյանը (համապատասխանաբար), և ABC և DEF անկյունների կողմերը հարաբերվում են (այնպես որ), AB և BC ունեն նույն հարաբերությունը, ինչպես DE և EF, իսկ մնացած անկյունները՝ C և F-ում, երկուսն էլ սկզբում փոքր են ուղիղ անկյունից։ ABC եռանկյունը նման է DEF եռանկյանը, և (այդ) ABC անկյունը հավասար կլինի DEF անկյանը, և (մնացած) անկյունը C անկյունը (պարզապես) հավասար կլինի F անկյանը։
Եթե ABC անկյունը հավասար չէ DEF (անկյանը), ապա դրանցից մեկը մեծ է մյուսից։ Դիցուք, ABC-ը մեծ լինի և թող ABG (անկյունը), որը հավասար է DEF անկյանը, կառուցված լինի AB ուղիղ գծի վրա՝ B կետում [Պնդ. 1.23]։
Եթե ուղղանկյուն եռանկյան ուղիղ անկյունից ուղիղ գիծ է գծվում ՝ ուղղահայաց հիմքի վրա, ապա ուղղահայաց գծի շուրջ գտնվող եռանկյունները նման են միմյանց և մեծ ուղանկյուն (եռանկյանը):
Դիցուք, ABC ուղղանկյուն եռանկյուն է, որի BAC անկյունը ուղիղ անկյուն է, և թող AD ուղիղ գիծը գծված լինի A կետից՝ ուղղահայաց BC-ին [Պնդ. 1.12]։ ABD և ADC եռանկյունները յուրաքանչյուրն էլ նման են ABC-ին և միմյանց։
[[Պատկեր:Pndum8.png|center|200px]]
Քանի որ BAC անկյունը հավասար է ADB անկյանը—երկուսն էլ ուղիղ անկյուններ են—իսկ B անկյունը ընդհանուր է ABC և ABD եռանկյունների համար, հետևաբար ACB անկյունը հավասար է BAD անկյանը[Պնդ. 1.32]։ Հետևաբար, ABC եռանկյունը նման է ABD եռանկյանը։ BC գտնվում է ABC եռանկյան ուղիղ անկյան դիմաց, BA ABD եռանկյան ուղիղ անկյան դիմաց, AB-ն, C անկյան դիմաց ABC- ում, (այդպես էլ) BD-ը, որը գտնվումէ BAD-ի դիմաց ABD եռանկյունում, AC և AD , (երկուսն էլ) B անկյանն են նայում, որը ընդհանուր է երկու եռանկյունների համար [Պնդ. 6.4]։ Հետևաբար, ABC եռանկյունը նման է ABD եռանկյանը և ունի հավասար անկյունների համապատասխան կողմերի նույն հարաբերությունը։ Հետևաբար, ABC եռանկյունւ նման է ABD եռանկյանը[Սահ. 6.1]։ Նույն կերպ, կարող ենք ցույց տալ, որ եռանկյուն ABC-ն նույնպես նման է ADC եռանկյանը։ Այսպիսով, ABD և ADC [եռանկյունները] նման են ABC եռանկյանը։
Այսպիսով, եռանկյունները ABD և ADC նույնպես նման են միմյանց։
Տրված ուղիղ գծից հարկավոր է կտրել սահմանված մասը:
[[Պատկեր:Pndum9.png|center|200px]]
Դիցուք, AB լինի ուղիղ գիծ։ Այպիսով, AB-ից պահանջվում է կտրել սահմանված մասը։
Եկեք նշանակենք A կետից գծենք AC ուղիղ գիծը, որը կազմում է կամայական անկյուն AB-ի հետ։ AC գծի վրա նշանակենք D կետը ։ Թող DE և EC հատվածները լինեն հավասար AD հատվածին [Պնդ. 1.3] և միացնենք BC։ DF գիծը գծենք D կետի միջոցով՝ որը ուգահեռ կլինի BC գծին [Պնդ. 1.31]։
Տրված չկտրվող ուղիղ գիծը կտրել այնպես, ինչպես տվյալ կտրված ուղիղ գիծը:
[[Պատկեր:Pnum2.png|center|200px]]
Դիցուք, AB տրված չկտրվող ուղիղ գիծն է, և AC ուղիղ գիծը, որը կտրված է D և E կետերում։ Թող AC գիծը տարվի այնպես, որ կազմի կամայական AB անկյան հետ։ Ապա, CB գիծը միացնենք։ DF և EG գծերը գծվեն D և E կետերով (համապատասխանաբար)՝ զուգահեռ BC գծին, և թող HK գիծը գծվի D կետի միջով՝ զուգահեռ AB գծին [Պնդ. 1.31]։
Հետևաբար, FH և HB-ը զուգահեռագծեր են։ DH-ը հավասար է FG-ին, իսկ HK-ն՝ GB-ին [Պնդ. 1.34]։ Քանի որ, HE ուղիղ գիծը գծված է զուգահեռ DKC եռանկյան KC կողմին, ապա համապատասխանաբար, ինչպես CE հարաբերվում է ED-ին, այնպես էլ KH հարաբերում HD-իմ[Պնդ. 6.2]։KH-ն հավասար է BG-ին, իսկ HD-ն՝ GF-ին։ Հետևաբար, ինչպես CE և ED հատվածների հարաբերությունն է, այնպես էլ BG և GF հատվածներինը։ Քանի որ, FD գիծը գծված է զուգահեռ AGE եռանկյան GE կողմին, ապա համապատասխանաբար, ինչպես ED հարաբերում է DA-ին, այնպես էլ GF- ը FA-ի հատվածին [Պնդ. 6.2]։ Եվ ցույց է տրվել, CE և ED հարաբերակցությունը հավասար է BG և GF- ի հարաբերակցությանը ։ Հետևաբար, ինչպես CE հարաբերում ED-ին, այնպես էլ BG՝ GF-ին, և ինչպես ED՝DA-ին, այնպես էլ GF՝ FA հատվածին։
Դիցուք, BA և AC տրված երկու ուղիղ գծերն են, և միասին կազմում են մի կամայական անկյուն։ Պահանջվում է գտնել երրորդ (ուղիղ գիծը), որը համաչափ է BA և AC ուղիղ գծերին։ BA և AC շարունակվեն դեպի D և E կետեր (համապատասխանաբար), և BD-ը հավասար լինի AC-ին [Պնդ. 1.3]։ Այնւհետև,BC գիծը միացվի։ DE գիծը գծեն D կետի միջով՝ զուգահեռ BC գծին [Պնդ. 1.31]։
Քանի որ BC գիծը զուգահեռ է ADE եռանկյան DE կողմին, ապա համաչափորեն, ինչպես AB հարաբերում է BD-ին, այնպես էլ AC CE հատվածին [Պնդ. 6.2]։ Իսկ BD-ը հավասար է AC-ին։ Հետևաբար, ինչպես AB և AC հատվածների հարաբերությունն է, այնպես էլ AC և CE հատվածներինը:
[[Պատկեր:Pndum11.png|center|200px]]
Այսպիսով, գտանք CE ուղիղ գիծը, որը համաչափ է տրված երկու ուղիղ գծերին՝ AB և AC։ Ապացուցվեց այն, ինչը պահանջվում էր:
Պահանջվում է գտնել չորրորդ ուղիղ գիծը , որը համաչափ կլինի տրված երեք ուղիղ գծերին:
[[Պատկեր:Pndum12.png|center|200px]]
Դիցուք A, B և C տրված երեք ուղիղ գծերն են։ Պահանջվում է գտնել չորրորդ (ուղիղ գիծը), որը համաչափ է A, B և C ուղիղ գծերին։
DE և DF երկու ուղիղ գծերը կազմում են (կամայական) EDF անկյունը։DG հատվածը հավասար է A հատվածին, GE-ը՝ B-ին, և DH-ը՝ C-ին [Պնդ. 1.3]։ E կետից տանենք ուղիղ, որը զուգահեռ GH գծին [Պնդ. 1.31]։
Գտնել ուղիղ գիծը, որը հավասար է երկու ուղիղ գծերի միջին համամասնությանը:
[[Պատկեր:Pndum13.png|center|200px]]
Դիցուք, AB և BC տրված երկու ուղիղ գծերն են։ Պահանջվում է գտնել AB և BC ուղիղ գծերի միջին համամասնությանը հավասար (ուղիղ գիծը)։
AB և BC գտնվում են ուղիղ գծի վրա: Գծենք ADC կիսաշրջանագիծը, որի համար AC հատվածը հանդիսանում է տրամագիծը [Պնդ. 1.10]։ BD գիծը գծենք B կետից ուղիղ գիծ տանելով, որը ուղղահայաց կլինի AC հատվածին [Պնդ. 1.11]։ Այնուհետև, D կետից ուղիղներ տանելով, կազմենէ AD և DC գծերը։
Հավասար և հավասարանկյուն զուգահեռագծերում հավասար անկյուններին համապատասխան կողմերը փոխադարձաբար համեմատական են։ Այդ հավասարանկյուն զուգահեռագծերը իրար հավասար են, քանի որ հավասար անկյունների կողմերը փոխադարձաբար համեմատական են են:
Դիցուք, AB և BC հավասար և հավասարանկյուն զուգահեռագծեր են, որոնց B անկյունները հավասար են։ DB և BE գծերը դրված են մի ուղղի վրա։ Հետևաբար, FB և BG գծերը նույնպես մի ուղղու վրա են [Պնդ. 1.14]։ Հարկ է նշել, որ AB և BC զուգահեռագծերի հավասար անկյունների գտնվող կողմերը փոխադարձաբար համեմատական են, այսինքն՝ ինչպես DB հարաբերում է BE-ին, այնպես էլ GB-ն՝ BF-ին։
[[Պատկեր:Pndum14.png|center|200px]]
Կազմենք նոր FE զուգահեռագիծը։ Քանի որ , AB զուգահեռագիծը հավասար է BC զուգահեռագծին, իսկ FE-ը այլ (զուգահեռագիծ) է, ապա ինչպես AB զուգահեռագիծը է հարաբերվում է FE զուգահեռագծին, այնպես էլ (զուգահեռագիծ) BC-ն՝ FE-ին [Պնդ. 5.7]։Ավելին, ինչպես AB զուգահեռագիծը FE զուգահեռագծին է հարաբերում, այնպես էլ DB հարաբերում է BE-ին, BC-ն FE-ին, այնպես էլ GB-ն՝ BF-ին[Պնդ. 6.1]։ Հետևաբար, DB և BE հարաբերությունը հավասար է, GB և BF զուգահեռագծերի հարաբերությունը։Արդյունքում, AB և BC զուգահեռագծերի համապատասխանաբար հավասար անկյունների շուրջ գտնվող կողմերը փոխադարձաբար համեմատական են միմյանց։
Ինչպես DB հարաբերում է BE զուգահեռագծին, այնպես էլ GB զուգահեռագիծը BF զուգահեռագծին։ Հետևաբար, AB զուգահեռագիծը հավասար է BC զուգահեռագծին։
Հավասար եռանկյուններում, որոնց համապատասխան մի անկյունը հավասար է, ապա այդ անկյունների կողմերը փոխադարձ համեմատական են։ Եվ այդ եռանկյունների հավասար անկյունների համապատասխան կողմերը փոխադարձ համեմատական են և հավասար:
Դիցուք, ABC և ADE հավասար եռանկյուններ են, ուստի, մի անկյունը՝ BAC հավասար է համապատասխան DAE անկյանը։ABC և ADE եռանկյունների հավասար անկյունների շուրջ գտնվող կողմերը փոխադարձ համեմատական են, այսինքն՝ ինչպես CA-ն է AD-ին հարաբերվում, այնպես էլ EA-ն՝ AB-ին։
[[Պատկեր:Pndum15.png|center|200px]]
CA գիծը գծենք այնպես, որ լինի AD-ի ուղիղ շարունակությունը։ Հետևաբար, EA-ն նույնպես AB-ի ուղիղ շարունակությունն է [Պնդ. 1.14]։ B-ից ուղիղ գիծ իջեցնենք D-ին։
Քանի որ, ABC եռանկյունը հավասար է ADE եռանկյանը, իսկ BAD այլ (եռանկյուն) է, ապա ինչպես CAB եռանկյունը հարաբերում է BAD եռանկյանը, այնպես էլ EAD՝BAD-ին[Պնդ. 5.7]։ Ավելին, ինչպես CAB և BAD եռանկյունների հարաբերությունը նունն է, ինչ CA և AD հարաբերությունը, և ինչպես EAD և BAD եռանկյուններինը, այնպես էլ EA և AB հարաբերությունն է[Պնդ. 6.1]։ Եվ հետևաբար, ինչպես CA-ն է AD-ին հարաբերվում, այնպես էլ EA-ն՝ AB-ին։ Հետևաբար, ABC և ADE եռանկյունների հավասար անկյունների շուրջ գտնվող կողմերը փոխադարձ համեմատական են։
Եթե չորս ուղիղ գծեր համաչափ են, ապա (երկու) արտաքին կողմերով կազմված ուղղանկյունը հավասար է (երկու) միջին կողմերով կազմված ուղղանկյանը։ Եվ եթե այդ ուղղանկյունները իրար հավասար են, ապա, չորս ուղիղ գծերը կլինեն համաչափ։
[[Պատկեր:Pndum16.png|center|200px]]
Դիցուք, AB, CD, E և F չորս համաչափ ուղիղ գծեր են (այնպես, որ ինչպես AB հարաբերում է CD հատվածին, այնպես էլ E հատվածի հարաբերությունը F հատվածին)։ AB և F ուղիղ գծերով կազմված ուղղանկյունը հավասար կլինի CD և E հատվածներով կազմված ուղղանկյանը։
A և C կետերից տանենք ուղիղ գիծ, արդյունքում ստանալով AG և CH գծերը, որոնք ուղղահայաց կլինեն AB և CD կողմերին(համապատասխանաբար) [Պնդ. 1.11]։ AG հատվածի երկարությունը հավասար է F հատվածի երկարությանը, իսկ CH՝ E հատվածի երկարությանը [Պնդ. 1.3]։ Այնուհետև կազմենք BG և DH ուղղանկյունները։
Եթե երեք ուղիղ գծեր համաչափ են միմյանց, ապա տրված (երկու) արտաքին հատվածներով կազմված ուղղանկյունը հավասար է միջին հատվածներով կազմված քառակուսուն։ Եվ եթե այդ ուղղանկյունը հավասար է քառակուսուն, ապա տվյալ երեք ուղիղ գծերը կլինեն համաչափ։
 [[Պատկեր:Pndum17.png|center|200px]]
Դիցուք , A, B և C երեք համաչափ ուղիղ գծերեն (այնպես, որ ինչպես A հատվածն է հարաբերում B հատվածին, այնպես էլ B հատվածը C-ին)։ Ուստի, կարող եմ ասել ,որ A և C ուղիղ գծերով կառուցված ուղղանկյունը հավասար է B հատվածով կազմված քառակուսուն։
Ուստի, D հատվածը հավասար են B հատվածին [Պնդ. 1.3]։
Նկարագրել ուղղագիծ պատկեր, որը նման է տրված ուղղագծային պատկերին:
[[Պատկեր:Pndum18.png|center|200px]]
Դիցուք, AB տրված ուղիղ գիծն է,իսկ CE՝ տրված ուղղագծային պատկերը։ Անհրաժեշտ է նկարագրել ուղղագծային պատկեր, որը նման է CE ուղղագծային պատկերը ,որը կազմված կլինի AB ուղիղ գծի վրա:
D միացնենք F-ին, GAB անկյունը, որը հավասար է C անկյանը, և ABG անկյունը, որը հավասար է CDF անկյանը, այնուհետև A և B կետերով տարած ուղիղ գիծը՝ համապատասխանաբար [Պնդ. 1.23]։ Այսպիսով, CFD անկյունը հավասար է AGB անկյանը [Պնդ. 1.32]։ Հետևաբար, FCD եռանկյունը հավասարանկյուն է GAB եռանկյանը։ Այսպիսով, համապատասխանաբար, ինչպես FD հարաբերում է GB-ին, այնպես էլ FC ՝GA-ին, իսկ CD-ն՝ AB-ին [Պնդ. 6.4]։ Այսպիսով, BGH անկյունը, որը հավասար է DFE և GBH անկյանը, որը հավասար է FDE անկյանը, կկառուցվեն ուղիղ գծի՝ BG-ի G և B կետերում համապատասխանաբար [Պնդ. 1.23]։ Այսպիսով, E առընթեր անկյունը հավասար է H առընթեր անկյանը [Պնդ. 1.32]։ Հետևաբար, FDE եռանկյունը հավասարանկյուն է GHB եռանկյանը։ Այսպիսով, համապատասխանաբար, ինչպես FD և GB մհարաբերվում, այնպես էլ FE և GH-ն, իսկ ED-ն՝ HB-ին [Պնդ. 6.4]։ Ավելին, որ ինչպես FD և GB հարաբերությունն է, այնպես էլ FC և GA ունեն նույն հարաբերությունը, CD և AB նույնպես։ Հետևաբար, ինչպես FC-ն GA-ին է հարաբերում, այնպես էլ CD՝ AB-ին, և FE-ն՝ GH-ին, և, վերջապես, ED-ն՝ HB-ին։ Քանի որ, CFD անկյունը հավասար է AGB անկյանը, իսկ DFE անկյունը՝ BGH անկյանը, ապա ամբողջ CFE անկյունը հավասար կլինի ամբողջական AGH անկյանը։ Նույն կերպ, CDE անկյունը հավասար է ABH անկյանը։ C անկյունը նույնպես հավասար է A անկյանը, իսկ E անկյունը՝ H անկյանը։ Այսպիսով, AH պատկերը հավասարանկյուն է CE-ին։ Երկու պատկերների հավասար անկյուններին համապատասխան կողմերը համաչափ են։ Հետևաբար, AH ուղղագիծ պատկերը նման է CE ուղղագծային պատկերին [Սահմ. 6.1]։
Նման եռանկյունները մեկմեկու ունեն համապատասխան կողմերի քառակուսի հարաբերություն:
[[Պատկեր:Pndum19.png|center|200px]]
Դիցուք, ABC և DEF նման եռանկյուններ են, որտեղ B անկյունը հավասար է E անկյանը, իսկ AB հարաբերում է BC կողմին այնպես, ինչպես DE հարաբերում է EF կողմին, ընդ որում BC-ը համընկնում է EF-ի հետ։ Ուստի, ABC եռանկյունը ունի քառակուսի հարաբերություն DEF եռանկյան հետ՝ BC և EF կողմի քառակուսի հարաբերությամբ։
BG ուղիղ գիծը գծենք այնպես, որ համեմատական լինի BC և EF-ի հետ, որպեսզի ինչպես BC և EF հարաբերությունը լինի, այնպես ինչպես EF՝ BG-ին [Պնդ. 6.11]։ Եվ թող A կետից հիմքին տանենք ուղիղ ։
Նման բազմանկյունները կարող են բաժանվել նույն թվով նման եռանկյունների, որոնք համամասն են ամբողջական բազմանկյանը, և բազմանկյունը այլ բազմանկյան հետ քառակուսի հարաբերություն՝ համապատասխանաբար կողմով:
[[Պատկեր:Pndum20.png|center|200px]]
Դիցուք, ABCDE և FGHKL նման բազմանկյուններ են, որտեղ AB կողմը համապատասխանում է FG կողմին։ Նշենք, որ ABCDE և FGHKL բազմանկյունները կարելի է բաժանել նույն թվով նման եռանկյունների, որոնք համամասն են ամբողջական բազմանկյանը, ABCDE բազմանկյունը ունի քառակուսի հարաբերություն FGHKL բազմանկյան նկատմամբ՝ AB և FG կողմերի հարաբերությամբ։
BE, EC, GL և LH գծերը միացնենք իրար։
Ոււղղագիծ պատկերները, որոնք նման են միևնույն ուղղագծին, նույնպես միմյանց նման են:
[[Պատկեր:Pndum21.png|center|200px]]
Դիցուք, A և B ուղղագիծ պատկերները նման լինեն C ուղղագիծ-ուղղանկյունաձև պատկերին։ Պետք է ցույց տալ, որ A-ն նույնպես նման է B-ին։
Քանի որ A պատկերը նման է C-ին, ապա A համանկյուն է C-ին և ունի հավասար անկյունների կողմերին համաչափ (համապատասխանող) կողմեր [Սահմ. 6.1]։Նույն կերպ, ինչպես B-ն նման է C-ին, ապա B-ն նույնպես համանկյուն է C-ին և ունի հավասար անկյունների կողմերին համաչափ կողմեր [Սահմ. 6.1]։
Եթե չորս ուղիղ գծերը համաչափ են, համանման և նույն կերպ նկարագրված գծված, ապա իրենցով կազմված ուղղագիծ պատկերները նույնպես համաչափ կլինեն: Եվ եթե նմանատիպ և նույն կերպ նկարագրված ուղղագիծ պատկերները (գծված) համաչափ են, ապա ուղիղ գծերն իրենք նույնպես համաչափ կլինեն:
[[Պատկեր:Pndum22.png|center|200px]]
Դիցուք, AB, CD, EF և GH չորս համեմատական ուղիղ գծեր են՝ այնպես, որ AB հարաբերում է CD-ին այնպես, ինչպես EF՝GH-ին: Եվ թող AB և CD գծերի վրա կառուցված լինեն KAB և LCD ուղղագծային պատկերները, որոնք նման են և դրված են նմանապես, իսկ EF և GH գծերի վրա կառուցված լինեն MF և NH ուղղագծային պատկերները, որոնք նույնպես նման են և դրված են նմանապես:Նշենք, որ KAB հարաբերի LCD-ին է, ինչպես MF՝ NH-ին:
Դիցուք, O ուղիղ գիծը, որը համեմատական է AB և CD գծերին, և P՝ երրորդ ուղիղ գիծ, որը համեմատական է EF և GH գծերին [Պնդ. 6.11]: Եվ քանի որ AB հարաբերում է CD-ին այնպես, ինչպես EF՝GH-ին, և CD՝O-ին, GH՝P-ին, ապա հավասարության սկզբունքով՝ AB կհարաբերի O-ին, ինչպես EF՝P-ին [Պնդ. 5.22]:Ավելին, ինչպես AB հարաբերում O-ին, այնպես էլ KAB՝LCD-ին, ինպես EF՝ P-ին, այնպես էլ MF՝NH-իմ [Պ նդ. 5.19՝]: Եվ, հետևաբար, KAB կհարաբերի LCD-ին, ինչպես MF՝NH-ին:
33
edits