Changes
Յուրաքանչյուր դիտորդ կարող է ռադարի օգնությամբ իմանալ, թե որտեղ և երբ տեղի ունեցավ տվյալ պատահույթը՝ այնտեղ լույսի կամ ռադիոալիքների ազդանշան ուղարկելով։ Ազդանշանի մի մասը պատահույթի վայրից վերադառնում է, և դիտորդը չափում է արձագանքի ստացման ժամանակը։ Պատահույթի ժամանակ է կոչվում ազդանշանի հաղորդման և արձագանքի ստացման տևողությունների կիսագումարը, իսկ պատահույթի հեռավորությունն այդ շրջապտույտի կիսաժամանակի և լույսի արագության արտադրյալն է։ (Պատահույթ ասվածը, այս իմաստով, տարածության մի առանձին կետում և որոշակի ժամանակում տեղի ունեցածն է)։ Այս պատկերացումը ցույց է տրված նկ․21֊ում, որը տարածություն֊ժամանակ դիագրամի մի օրինակ է։ Այս ընթացակարգն օգտագործելով, դիտորդները, որոնք իրար նկատմամբ հարաբերական շարժման մեջ են, կարող են միևնույն երևույթին տարբեր դիրքեր և տարբեր ժամանակներ վերագրել։ Որևէ մեկի չափումն ավելի ճիշտ չի կարելի համարել մյուսի նկատմամբ, սակայն բոլոր չափումները կապված են միմյանց հետ։ Եթե դիտորդներից մեկին հայտնի է մյուսի շարժման հարաբերական արագությունը, ապա նա կարող է ճշգրտորեն իմանալ, թե այս վերջինը տվյալ դեպքի համար ինչ դիրք և ժամանակ է որոշել։
[[Պատկեր:H2 1.svg|thumb| Նկ․ 2․ 1․ Ժամանակը տեղադրված է ուղղաձիգ, իսկ դիտորդից եղած հեռավորությունը՝ հորիզոնական առանցքնեիր վրա։ Դիտորդի ուղին տարածության և ժամանակի մեջ ներկայացված է ձախ մասում ցույց տրված ուղղաձիգ գծով։ Դեպի պատահույթը և նրանից անդրադարձած լույսի ճառագայթների ուղիները թեք գծերն են։]]
Այժմ մենք հենց այս ռադարային եղանակն ենք օգտագործում հեռավորությունը ճշգրիտ չափելու համար, որովհետև կարող ենք ժամանակն ավելի մեծ ճշգրտությամբ չափել, քան հեռավորությունը։ Արդարև, մետրը սահմանված է որպես այնպիսի հեռավորություն, որը լույսն անցնում է 0,00000000 33356-40952 վայրկյանում՝ չափված ցեզիումային ժամացույցով։ (Այս հատուկ թվի ընտրությունը պայմանավորված է նրանով, որ դա համապատասխանում է մետրի պատմական սահմանը՝ որպես Փարիզում պահվող հատուկ պլատինե ձողի երկու նշանակետերով սահմանված երկարություն)։ Մենք հավասարապես կարող ենք օգտվել երկարության ավելի հարմար նոր միավորից՝ լուսավայրկյանից։ Դա ուղղակի այն հեռավորությունն է, որը լույսն անցնում է մեկ վայրկյանում։ Հարաբերականության տեսության մեջ մենք այժմ հեռավորությունը սահմանել ենք, ժամանակի և լույսի արագության միջոցով։ Հետևաբար յուրաքանչյուր դիտորդ լույսը չափելիս արագության համար պետք է օգտագործի միևնույն արժեքը (այսինքն՝ 1 մետր 0,000000003335640952 վայրկյանում)։ Որևէ կարիք չկա, որ ներմուծվի եթերի գաղափարը, ինչի գոյությունն ամենուր հնարավոր չէ հայտնաբերել, ինչպես ցույց է տալիս Մայքելսոն֊Մոռլիի փորձը։ Այսպիսով, հարաբերականության տեսությունը մեզ հիմք է տալիս հիմնավորապես փոխելու մեր պատկերացումները տարածության և ժամանակի մասին։ Մենք պետք է ընդունենք, որ ժամանակը լիովին անջատ և անկախ չէ տարածությունից, այլ նրանք միավորված են միմյանց հետ, որպես, այսպես կոչված, տարածություն֊ժամանակ։
Հաճախ շատ օգտակար է մտածել, պատահույթի չորս կոորդինատների մասին՝ բնորոշելու նրա դիրքը քառաչափ տարածության մեջ, որը կոչվել է տարծություն֊ժամանակ։ Սակայն քառաչափ տարածությունն անհնար է պատկերացնել։ Ես ինքս դժվար եմ պատկերացնում նույնիսկ եռաչափ տարածությունը։ Այնուամենայնիվ, հեշտ է երկչափ տարածության դիագրամներ գծել, ինչպես, օրինակ, երկրագնդի մակերևույթը։ (Երկրագնդի մակերևույթը երկչափ է, որովհետև նրա վրա կետի դիրքը կարելի է որոշել երկու կոորդինատներով՝ լայնությամբ և երկարությամբ)։ Ես հիմնականում օգտագործելու եմ դիագրամներ, որոնցում ժամանակն աճման կարգով ցույց է տրվելու հեռանկարում։ (Դրանք կոչվում են տարածություն֊ժամանակ դիագրամներ, օրինակ, նկ․ 2.1֊ը)։ Դիցուկ, 2.2 նկարում ժամանակը տեղադրված է ուղղահայաց առանցքի վրա՝ տարիներով, իսկ հորիզոնական առանցքի վրա՝ արևի և Ալֆա Կենտավրոս աստղի միջև եղած հեռավորությունը՝ մղոններով։ Արևի և Ալֆա Կենտավրոսի հետագծերը տարածություն֊ժամանակ դիագրամում ցույց են տրված որպես ուղղաձիգ գծեր ձախ և աջ կողմերում։ Արևի լույսի ճառագայթը, անցնելով թեք անկյունագծով, չորս տարում արևից հասնում է Ալֆա Կենտավրոսին։
[[Պատկեր:H2 2.svg|thumb]]
Ինչպես մենք արդեն գիտենք, Մաքսվելի հավասարումները կանխատեսում են, որ լույսի արագությունը նույնը պիտի լինի, անկախ աղբյուրի շարժման արագությունից, ինչը հաստատված է ճշգրիտ չափումներով։ Սրանից հետևում է, որ եթե որոշակի ժամանակում տարածության որոշակի կետից լուսային ազդանշան է արձակվել, ապա անցնող ժամանակի հետ լույսը պիտի տարածվի որպես լուսային գունդ, որի մեծությունն ու դիրքը կախված չեն աղբյուրի արագությունից։ Մեկ միլիոներորդ վայրկյան հետո լույսը պիտի տարածվի՝ առաջացնելով 300 մետր շառավիղ ունեցող գունդ, երկու միլիոներորդ վայրկյան հետո գնդի շառավիղը կլինի 600 մետր և այսպես շարունակ։ Սա նման կլինի լճակի մակերևույթին տարածվող ալիքներին, երբ լճակի մեջ քար է գցվում։ Ալիքները, տարածվելով շրջանաձև, ժամանակի հետ գնալով ավելի և ավելի են տարածվում։ Եթե այժմ պատկերացնենք եռաչափ տարածական մոդել՝ բաղկացած լճակի երկչափ մակերեսից և միաչափ ժամանակից, ապա տարածվող ալիքները ժամանակի ընթացքում կառաջացնեն մի կոն, որի գագաթը կհամապատասխանի այն տեղին և ժամանակին, երբ քարը խփվում է ջրին (նկ․2.3):