Changes

Տարերք/Գիրք 13

Ավելացվել է 5 բայտ, 12:09, 29 Նոյեմբերի 2024
::::Դիտարկենք AB և CD կողմերով քառակուսիները՝ ABEK և DLFC ''(Նկ․ 1)''։ Տանենք DF անկյունագիծը և FC հատվածը շարունակելով հատենք KE-ի հետ G-ում։ Քանի որ AB հատվածը բաժանված է արտաքին և միջին հարաբերությամբ C-ում, ապա AB և BC կողմերով ուղղանկյան մակերեսը հավասար է AC կողմով քառակուսու մակերեսին`
<math>AC^2 = AB\cdot BC</math> ''(Սահմ․ 6․3, Պնդ․ 6․17)''։ Հետևաբար CBEG ուղղանկյան մակերեսը հավասար է FH անկյունագծով քառակուսու մակերեսին ''(Նկ․ 1)'': Եվ քանի որ <math>AB = 2\cdot AD</math> և <math>BA = KA</math>, <math>AD = AH</math>, հետևաբար <math>KA = 2\cdot AH</math>: Այսպիսով ստանում ենք հարաբերություն՝ <math>\frac{KA}{AH} = \frac{CK}{HCմա} </math> ''(Պնդ․ 6․1)'', հետևաբար՝ ACGK ուղղանկյան մակերեսը հավասար է երկու անգամ CH անկյունագծով ուղղանկյան մակերեսին: Եվ քանի որ LH անկյունագծով ուղղանկյունը հավասար է CH անկյունագծով ուղղանկյանը, ապա նրանց մակերեսների գումարը հավասար է երկու անգամ СH անկյունագծով ուղղանկյան մակերեսին ''(Պնդ․ 1․43)'': Այսպիսով ACKG ուղղանկյան մակերեսը հավասար է LH և HC անկյունագծերով ուղղանկյունների մակերեսների գումարին։ Ինչպես ցույց տրվեց վերևում, ուղղանկյուն СBEG-ի մակերեսը հավասար է FH անկյունագծով քառակուսու մակերեսին, հետևաբար ABEK-ի մակերեսը հավասար է գնոմոն MNO-ին (CH, FH, LH անկյունագծերով ուղղանկյունների մակերեսների գումարին): Քանի որ գնոմոն <math>MNO = 4\cdot AP</math>, հետևաբար DLFC քառակուսու մակերեսը հավասար է 5 անգամ AP անկյունագծով քառակուսու մակերեսին։ Այսպիսով <math>CD^2 = 5\cdot DA^2</math>:
Այսպիսով, եթե հատվածը մասնատենք արտաքին և միջին համեմատությամբ, ապա մեծ հատվածի և ամբողջ հատվածի կեսի գումարի քառակուսին հավասար է 5 անգամ ամբողջ հատվածի կեսի քառակուսուն, ինչը և պահանջվում էր ապացուցել։